Whakaoti mō x
x=\frac{y-5}{5}
y\neq -5\text{ and }y\neq 0
Whakaoti mō y
y=5\left(x+1\right)
x\neq -2\text{ and }x\neq -1
Graph
Tohaina
Kua tāruatia ki te papatopenga
y\left(x+2\right)=\left(y+5\right)\left(x+1\right)
Me whakarea ngā taha e rua o te whārite ki te y\left(y+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o y+5,y.
yx+2y=\left(y+5\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te x+2.
yx+2y=yx+y+5x+5
Whakamahia te āhuatanga tohatoha hei whakarea te y+5 ki te x+1.
yx+2y-yx=y+5x+5
Tangohia te yx mai i ngā taha e rua.
2y=y+5x+5
Pahekotia te yx me -yx, ka 0.
y+5x+5=2y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
5x+5=2y-y
Tangohia te y mai i ngā taha e rua.
5x+5=y
Pahekotia te 2y me -y, ka y.
5x=y-5
Tangohia te 5 mai i ngā taha e rua.
\frac{5x}{5}=\frac{y-5}{5}
Whakawehea ngā taha e rua ki te 5.
x=\frac{y-5}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x=\frac{y}{5}-1
Whakawehe -5+y ki te 5.
y\left(x+2\right)=\left(y+5\right)\left(x+1\right)
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -5,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te y\left(y+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o y+5,y.
yx+2y=\left(y+5\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te x+2.
yx+2y=yx+y+5x+5
Whakamahia te āhuatanga tohatoha hei whakarea te y+5 ki te x+1.
yx+2y-yx=y+5x+5
Tangohia te yx mai i ngā taha e rua.
2y=y+5x+5
Pahekotia te yx me -yx, ka 0.
2y-y=5x+5
Tangohia te y mai i ngā taha e rua.
y=5x+5
Pahekotia te 2y me -y, ka y.
y=5x+5\text{, }y\neq -5\text{ and }y\neq 0
Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -5,0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}