Whakaoti mō x
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-2\right)\left(x+2\right)+\left(x+1\right)\times 3=3+\left(x-2\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x-2,x^{2}-x-2.
x^{2}-4+\left(x+1\right)\times 3=3+\left(x-2\right)\left(x+1\right)
Whakaarohia te \left(x-2\right)\left(x+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
x^{2}-4+3x+3=3+\left(x-2\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 3.
x^{2}-1+3x=3+\left(x-2\right)\left(x+1\right)
Tāpirihia te -4 ki te 3, ka -1.
x^{2}-1+3x=3+x^{2}-x-2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
x^{2}-1+3x=1+x^{2}-x
Tangohia te 2 i te 3, ka 1.
x^{2}-1+3x-x^{2}=1-x
Tangohia te x^{2} mai i ngā taha e rua.
-1+3x=1-x
Pahekotia te x^{2} me -x^{2}, ka 0.
-1+3x+x=1
Me tāpiri te x ki ngā taha e rua.
-1+4x=1
Pahekotia te 3x me x, ka 4x.
4x=1+1
Me tāpiri te 1 ki ngā taha e rua.
4x=2
Tāpirihia te 1 ki te 1, ka 2.
x=\frac{2}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{2}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}