Whakaoti mō x
x = \frac{\sqrt{14768641} + 3845}{2} \approx 3843.999479573
x = \frac{3845 - \sqrt{14768641}}{2} \approx 1.000520427
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\left(x+1\right)=3846\left(x-1\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
x^{2}+x=3846\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+1.
x^{2}+x=3846x-3846
Whakamahia te āhuatanga tohatoha hei whakarea te 3846 ki te x-1.
x^{2}+x-3846x=-3846
Tangohia te 3846x mai i ngā taha e rua.
x^{2}-3845x=-3846
Pahekotia te x me -3846x, ka -3845x.
x^{2}-3845x+3846=0
Me tāpiri te 3846 ki ngā taha e rua.
x=\frac{-\left(-3845\right)±\sqrt{\left(-3845\right)^{2}-4\times 3846}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -3845 mō b, me 3846 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3845\right)±\sqrt{14784025-4\times 3846}}{2}
Pūrua -3845.
x=\frac{-\left(-3845\right)±\sqrt{14784025-15384}}{2}
Whakareatia -4 ki te 3846.
x=\frac{-\left(-3845\right)±\sqrt{14768641}}{2}
Tāpiri 14784025 ki te -15384.
x=\frac{3845±\sqrt{14768641}}{2}
Ko te tauaro o -3845 ko 3845.
x=\frac{\sqrt{14768641}+3845}{2}
Nā, me whakaoti te whārite x=\frac{3845±\sqrt{14768641}}{2} ina he tāpiri te ±. Tāpiri 3845 ki te \sqrt{14768641}.
x=\frac{3845-\sqrt{14768641}}{2}
Nā, me whakaoti te whārite x=\frac{3845±\sqrt{14768641}}{2} ina he tango te ±. Tango \sqrt{14768641} mai i 3845.
x=\frac{\sqrt{14768641}+3845}{2} x=\frac{3845-\sqrt{14768641}}{2}
Kua oti te whārite te whakatau.
x\left(x+1\right)=3846\left(x-1\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
x^{2}+x=3846\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+1.
x^{2}+x=3846x-3846
Whakamahia te āhuatanga tohatoha hei whakarea te 3846 ki te x-1.
x^{2}+x-3846x=-3846
Tangohia te 3846x mai i ngā taha e rua.
x^{2}-3845x=-3846
Pahekotia te x me -3846x, ka -3845x.
x^{2}-3845x+\left(-\frac{3845}{2}\right)^{2}=-3846+\left(-\frac{3845}{2}\right)^{2}
Whakawehea te -3845, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3845}{2}. Nā, tāpiria te pūrua o te -\frac{3845}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3845x+\frac{14784025}{4}=-3846+\frac{14784025}{4}
Pūruatia -\frac{3845}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3845x+\frac{14784025}{4}=\frac{14768641}{4}
Tāpiri -3846 ki te \frac{14784025}{4}.
\left(x-\frac{3845}{2}\right)^{2}=\frac{14768641}{4}
Tauwehea x^{2}-3845x+\frac{14784025}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3845}{2}\right)^{2}}=\sqrt{\frac{14768641}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3845}{2}=\frac{\sqrt{14768641}}{2} x-\frac{3845}{2}=-\frac{\sqrt{14768641}}{2}
Whakarūnātia.
x=\frac{\sqrt{14768641}+3845}{2} x=\frac{3845-\sqrt{14768641}}{2}
Me tāpiri \frac{3845}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}