Whakaoti mō x (complex solution)
x=\frac{21y}{8\left(y^{2}+y+1\right)}
y\neq \frac{-1+\sqrt{3}i}{2}\text{ and }y\neq \frac{-\sqrt{3}i-1}{2}\text{ and }y\neq 0
Whakaoti mō x
x=\frac{21y}{8\left(y^{2}+y+1\right)}
y\neq 0
Whakaoti mō y (complex solution)
y=\frac{\sqrt{441-336x-192x^{2}}}{16x}-\frac{1}{2}+\frac{21}{16x}
y=-\frac{\sqrt{441-336x-192x^{2}}}{16x}-\frac{1}{2}+\frac{21}{16x}\text{, }x\neq 0
Whakaoti mō y
y=\frac{\sqrt{441-336x-192x^{2}}}{16x}-\frac{1}{2}+\frac{21}{16x}
y=-\frac{\sqrt{441-336x-192x^{2}}}{16x}-\frac{1}{2}+\frac{21}{16x}\text{, }x\neq 0\text{ and }x\geq -\frac{21}{8}\text{ and }x\leq \frac{7}{8}
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x+8yx+xy\times 8y=21y
Me whakarea ngā taha e rua o te whārite ki te 8y, arā, te tauraro pātahi he tino iti rawa te kitea o y,8.
8x+8yx+xy^{2}\times 8=21y
Whakareatia te y ki te y, ka y^{2}.
\left(8+8y+y^{2}\times 8\right)x=21y
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(8y^{2}+8y+8\right)x=21y
He hanga arowhānui tō te whārite.
\frac{\left(8y^{2}+8y+8\right)x}{8y^{2}+8y+8}=\frac{21y}{8y^{2}+8y+8}
Whakawehea ngā taha e rua ki te 8y^{2}+8y+8.
x=\frac{21y}{8y^{2}+8y+8}
Mā te whakawehe ki te 8y^{2}+8y+8 ka wetekia te whakareanga ki te 8y^{2}+8y+8.
x=\frac{21y}{8\left(y^{2}+y+1\right)}
Whakawehe 21y ki te 8y^{2}+8y+8.
8x+8yx+xy\times 8y=21y
Me whakarea ngā taha e rua o te whārite ki te 8y, arā, te tauraro pātahi he tino iti rawa te kitea o y,8.
8x+8yx+xy^{2}\times 8=21y
Whakareatia te y ki te y, ka y^{2}.
\left(8+8y+y^{2}\times 8\right)x=21y
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(8y^{2}+8y+8\right)x=21y
He hanga arowhānui tō te whārite.
\frac{\left(8y^{2}+8y+8\right)x}{8y^{2}+8y+8}=\frac{21y}{8y^{2}+8y+8}
Whakawehea ngā taha e rua ki te 8y^{2}+8y+8.
x=\frac{21y}{8y^{2}+8y+8}
Mā te whakawehe ki te 8y^{2}+8y+8 ka wetekia te whakareanga ki te 8y^{2}+8y+8.
x=\frac{21y}{8\left(y^{2}+y+1\right)}
Whakawehe 21y ki te 8y^{2}+8y+8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}