Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+2\right)x+\left(x-3\right)\left(2x+1\right)=\left(x+2\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x+2.
x^{2}+2x+\left(x-3\right)\left(2x+1\right)=\left(x+2\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te x.
x^{2}+2x+2x^{2}-5x-3=\left(x+2\right)\times 3
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te 2x+1 ka whakakotahi i ngā kupu rite.
3x^{2}+2x-5x-3=\left(x+2\right)\times 3
Pahekotia te x^{2} me 2x^{2}, ka 3x^{2}.
3x^{2}-3x-3=\left(x+2\right)\times 3
Pahekotia te 2x me -5x, ka -3x.
3x^{2}-3x-3=3x+6
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 3.
3x^{2}-3x-3-3x=6
Tangohia te 3x mai i ngā taha e rua.
3x^{2}-6x-3=6
Pahekotia te -3x me -3x, ka -6x.
3x^{2}-6x-3-6=0
Tangohia te 6 mai i ngā taha e rua.
3x^{2}-6x-9=0
Tangohia te 6 i te -3, ka -9.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-9\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -6 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\left(-9\right)}}{2\times 3}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-12\left(-9\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2\times 3}
Whakareatia -12 ki te -9.
x=\frac{-\left(-6\right)±\sqrt{144}}{2\times 3}
Tāpiri 36 ki te 108.
x=\frac{-\left(-6\right)±12}{2\times 3}
Tuhia te pūtakerua o te 144.
x=\frac{6±12}{2\times 3}
Ko te tauaro o -6 ko 6.
x=\frac{6±12}{6}
Whakareatia 2 ki te 3.
x=\frac{18}{6}
Nā, me whakaoti te whārite x=\frac{6±12}{6} ina he tāpiri te ±. Tāpiri 6 ki te 12.
x=3
Whakawehe 18 ki te 6.
x=-\frac{6}{6}
Nā, me whakaoti te whārite x=\frac{6±12}{6} ina he tango te ±. Tango 12 mai i 6.
x=-1
Whakawehe -6 ki te 6.
x=3 x=-1
Kua oti te whārite te whakatau.
x=-1
Tē taea kia ōrite te tāupe x ki 3.
\left(x+2\right)x+\left(x-3\right)\left(2x+1\right)=\left(x+2\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,x+2.
x^{2}+2x+\left(x-3\right)\left(2x+1\right)=\left(x+2\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te x.
x^{2}+2x+2x^{2}-5x-3=\left(x+2\right)\times 3
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te 2x+1 ka whakakotahi i ngā kupu rite.
3x^{2}+2x-5x-3=\left(x+2\right)\times 3
Pahekotia te x^{2} me 2x^{2}, ka 3x^{2}.
3x^{2}-3x-3=\left(x+2\right)\times 3
Pahekotia te 2x me -5x, ka -3x.
3x^{2}-3x-3=3x+6
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 3.
3x^{2}-3x-3-3x=6
Tangohia te 3x mai i ngā taha e rua.
3x^{2}-6x-3=6
Pahekotia te -3x me -3x, ka -6x.
3x^{2}-6x=6+3
Me tāpiri te 3 ki ngā taha e rua.
3x^{2}-6x=9
Tāpirihia te 6 ki te 3, ka 9.
\frac{3x^{2}-6x}{3}=\frac{9}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{6}{3}\right)x=\frac{9}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-2x=\frac{9}{3}
Whakawehe -6 ki te 3.
x^{2}-2x=3
Whakawehe 9 ki te 3.
x^{2}-2x+1=3+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=4
Tāpiri 3 ki te 1.
\left(x-1\right)^{2}=4
Tauwehea te x^{2}-2x+1. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=2 x-1=-2
Whakarūnātia.
x=3 x=-1
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=-1
Tē taea kia ōrite te tāupe x ki 3.