Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{x\times 9}{3}+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Whakawehe x ki te \frac{3}{9} mā te whakarea x ki te tau huripoki o \frac{3}{9}.
x\times 3+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Whakawehea te x\times 9 ki te 3, kia riro ko x\times 3.
x\times 3+\frac{x}{25\times 100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Tuhia te \frac{\frac{x}{25}}{100} hei hautanga kotahi.
x\times 3+\frac{x}{2500}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Whakareatia te 25 ki te 100, ka 2500.
\frac{7501}{2500}x+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90}
Pahekotia te x\times 3 me \frac{x}{2500}, ka \frac{7501}{2500}x.
\frac{7501}{2500}x+\frac{x}{2\times 10}+\frac{\frac{x}{15}}{90}
Tuhia te \frac{\frac{x}{2}}{10} hei hautanga kotahi.
\frac{7501}{2500}x+\frac{x}{20}+\frac{\frac{x}{15}}{90}
Whakareatia te 2 ki te 10, ka 20.
\frac{3813}{1250}x+\frac{\frac{x}{15}}{90}
Pahekotia te \frac{7501}{2500}x me \frac{x}{20}, ka \frac{3813}{1250}x.
\frac{3813}{1250}x+\frac{x}{15\times 90}
Tuhia te \frac{\frac{x}{15}}{90} hei hautanga kotahi.
\frac{3813}{1250}x+\frac{x}{1350}
Whakareatia te 15 ki te 90, ka 1350.
\frac{51488}{16875}x
Pahekotia te \frac{3813}{1250}x me \frac{x}{1350}, ka \frac{51488}{16875}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\times 9}{3}+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Whakawehe x ki te \frac{3}{9} mā te whakarea x ki te tau huripoki o \frac{3}{9}.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{\frac{x}{25}}{100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Whakawehea te x\times 9 ki te 3, kia riro ko x\times 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{x}{25\times 100}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Tuhia te \frac{\frac{x}{25}}{100} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(x\times 3+\frac{x}{2500}+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Whakareatia te 25 ki te 100, ka 2500.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{\frac{x}{2}}{10}+\frac{\frac{x}{15}}{90})
Pahekotia te x\times 3 me \frac{x}{2500}, ka \frac{7501}{2500}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{x}{2\times 10}+\frac{\frac{x}{15}}{90})
Tuhia te \frac{\frac{x}{2}}{10} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7501}{2500}x+\frac{x}{20}+\frac{\frac{x}{15}}{90})
Whakareatia te 2 ki te 10, ka 20.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{\frac{x}{15}}{90})
Pahekotia te \frac{7501}{2500}x me \frac{x}{20}, ka \frac{3813}{1250}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{x}{15\times 90})
Tuhia te \frac{\frac{x}{15}}{90} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3813}{1250}x+\frac{x}{1350})
Whakareatia te 15 ki te 90, ka 1350.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{51488}{16875}x)
Pahekotia te \frac{3813}{1250}x me \frac{x}{1350}, ka \frac{51488}{16875}x.
\frac{51488}{16875}x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{51488}{16875}x^{0}
Tango 1 mai i 1.
\frac{51488}{16875}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{51488}{16875}
Mō tētahi kupu t, t\times 1=t me 1t=t.