Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8n=\left(n+3\right)\sqrt{3}
Tē taea kia ōrite te tāupe n ki -3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 8\left(n+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3+n,8.
8n=n\sqrt{3}+3\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te n+3 ki te \sqrt{3}.
8n-n\sqrt{3}=3\sqrt{3}
Tangohia te n\sqrt{3} mai i ngā taha e rua.
-\sqrt{3}n+8n=3\sqrt{3}
Whakaraupapatia anō ngā kīanga tau.
\left(-\sqrt{3}+8\right)n=3\sqrt{3}
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\left(8-\sqrt{3}\right)n=3\sqrt{3}
He hanga arowhānui tō te whārite.
\frac{\left(8-\sqrt{3}\right)n}{8-\sqrt{3}}=\frac{3\sqrt{3}}{8-\sqrt{3}}
Whakawehea ngā taha e rua ki te -\sqrt{3}+8.
n=\frac{3\sqrt{3}}{8-\sqrt{3}}
Mā te whakawehe ki te -\sqrt{3}+8 ka wetekia te whakareanga ki te -\sqrt{3}+8.
n=\frac{24\sqrt{3}+9}{61}
Whakawehe 3\sqrt{3} ki te -\sqrt{3}+8.