Whakaoti mō n
n=\frac{24\sqrt{3}+9}{61}\approx 0.829003596
Tohaina
Kua tāruatia ki te papatopenga
8n=\left(n+3\right)\sqrt{3}
Tē taea kia ōrite te tāupe n ki -3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 8\left(n+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3+n,8.
8n=n\sqrt{3}+3\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te n+3 ki te \sqrt{3}.
8n-n\sqrt{3}=3\sqrt{3}
Tangohia te n\sqrt{3} mai i ngā taha e rua.
-\sqrt{3}n+8n=3\sqrt{3}
Whakaraupapatia anō ngā kīanga tau.
\left(-\sqrt{3}+8\right)n=3\sqrt{3}
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\left(8-\sqrt{3}\right)n=3\sqrt{3}
He hanga arowhānui tō te whārite.
\frac{\left(8-\sqrt{3}\right)n}{8-\sqrt{3}}=\frac{3\sqrt{3}}{8-\sqrt{3}}
Whakawehea ngā taha e rua ki te -\sqrt{3}+8.
n=\frac{3\sqrt{3}}{8-\sqrt{3}}
Mā te whakawehe ki te -\sqrt{3}+8 ka wetekia te whakareanga ki te -\sqrt{3}+8.
n=\frac{24\sqrt{3}+9}{61}
Whakawehe 3\sqrt{3} ki te -\sqrt{3}+8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}