Whakaoti mō n
n = \frac{6 \sqrt{6} + 9}{5} \approx 4.739387691
Tohaina
Kua tāruatia ki te papatopenga
n=\left(n+3\right)\sqrt{\frac{3}{8}}
Tē taea kia ōrite te tāupe n ki -3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te n+3.
n=\left(n+3\right)\times \frac{\sqrt{3}}{\sqrt{8}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{3}{8}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{3}}{\sqrt{8}}.
n=\left(n+3\right)\times \frac{\sqrt{3}}{2\sqrt{2}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
n=\left(n+3\right)\times \frac{\sqrt{3}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
n=\left(n+3\right)\times \frac{\sqrt{3}\sqrt{2}}{2\times 2}
Ko te pūrua o \sqrt{2} ko 2.
n=\left(n+3\right)\times \frac{\sqrt{6}}{2\times 2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
n=\left(n+3\right)\times \frac{\sqrt{6}}{4}
Whakareatia te 2 ki te 2, ka 4.
n=\frac{\left(n+3\right)\sqrt{6}}{4}
Tuhia te \left(n+3\right)\times \frac{\sqrt{6}}{4} hei hautanga kotahi.
n=\frac{n\sqrt{6}+3\sqrt{6}}{4}
Whakamahia te āhuatanga tohatoha hei whakarea te n+3 ki te \sqrt{6}.
n-\frac{n\sqrt{6}+3\sqrt{6}}{4}=0
Tangohia te \frac{n\sqrt{6}+3\sqrt{6}}{4} mai i ngā taha e rua.
4n-\left(n\sqrt{6}+3\sqrt{6}\right)=0
Whakareatia ngā taha e rua o te whārite ki te 4.
4n-n\sqrt{6}-3\sqrt{6}=0
Hei kimi i te tauaro o n\sqrt{6}+3\sqrt{6}, kimihia te tauaro o ia taurangi.
4n-n\sqrt{6}=3\sqrt{6}
Me tāpiri te 3\sqrt{6} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\left(4-\sqrt{6}\right)n=3\sqrt{6}
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\frac{\left(4-\sqrt{6}\right)n}{4-\sqrt{6}}=\frac{3\sqrt{6}}{4-\sqrt{6}}
Whakawehea ngā taha e rua ki te 4-\sqrt{6}.
n=\frac{3\sqrt{6}}{4-\sqrt{6}}
Mā te whakawehe ki te 4-\sqrt{6} ka wetekia te whakareanga ki te 4-\sqrt{6}.
n=\frac{6\sqrt{6}+9}{5}
Whakawehe 3\sqrt{6} ki te 4-\sqrt{6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}