Whakaoti mō m (complex solution)
\left\{\begin{matrix}\\m=\frac{5}{2}=2.5\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&x=5\end{matrix}\right.
Whakaoti mō x (complex solution)
\left\{\begin{matrix}\\x=5\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&m=\frac{5}{2}\end{matrix}\right.
Whakaoti mō m
\left\{\begin{matrix}\\m=\frac{5}{2}=2.5\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&x=5\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}\\x=5\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&m=\frac{5}{2}\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
2mx-5\left(x-1\right)=10m-20
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2mx-5x+5=10m-20
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x-1.
2mx-5x+5-10m=-20
Tangohia te 10m mai i ngā taha e rua.
2mx+5-10m=-20+5x
Me tāpiri te 5x ki ngā taha e rua.
2mx-10m=-20+5x-5
Tangohia te 5 mai i ngā taha e rua.
2mx-10m=-25+5x
Tangohia te 5 i te -20, ka -25.
\left(2x-10\right)m=-25+5x
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(2x-10\right)m=5x-25
He hanga arowhānui tō te whārite.
\frac{\left(2x-10\right)m}{2x-10}=\frac{5x-25}{2x-10}
Whakawehea ngā taha e rua ki te 2x-10.
m=\frac{5x-25}{2x-10}
Mā te whakawehe ki te 2x-10 ka wetekia te whakareanga ki te 2x-10.
m=\frac{5}{2}
Whakawehe -25+5x ki te 2x-10.
2mx-5\left(x-1\right)=10m-20
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2mx-5x+5=10m-20
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x-1.
2mx-5x=10m-20-5
Tangohia te 5 mai i ngā taha e rua.
2mx-5x=10m-25
Tangohia te 5 i te -20, ka -25.
\left(2m-5\right)x=10m-25
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(2m-5\right)x}{2m-5}=\frac{10m-25}{2m-5}
Whakawehea ngā taha e rua ki te -5+2m.
x=\frac{10m-25}{2m-5}
Mā te whakawehe ki te -5+2m ka wetekia te whakareanga ki te -5+2m.
x=5
Whakawehe 10m-25 ki te -5+2m.
2mx-5\left(x-1\right)=10m-20
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2mx-5x+5=10m-20
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x-1.
2mx-5x+5-10m=-20
Tangohia te 10m mai i ngā taha e rua.
2mx+5-10m=-20+5x
Me tāpiri te 5x ki ngā taha e rua.
2mx-10m=-20+5x-5
Tangohia te 5 mai i ngā taha e rua.
2mx-10m=-25+5x
Tangohia te 5 i te -20, ka -25.
\left(2x-10\right)m=-25+5x
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(2x-10\right)m=5x-25
He hanga arowhānui tō te whārite.
\frac{\left(2x-10\right)m}{2x-10}=\frac{5x-25}{2x-10}
Whakawehea ngā taha e rua ki te 2x-10.
m=\frac{5x-25}{2x-10}
Mā te whakawehe ki te 2x-10 ka wetekia te whakareanga ki te 2x-10.
m=\frac{5}{2}
Whakawehe -25+5x ki te 2x-10.
2mx-5\left(x-1\right)=10m-20
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2mx-5x+5=10m-20
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x-1.
2mx-5x=10m-20-5
Tangohia te 5 mai i ngā taha e rua.
2mx-5x=10m-25
Tangohia te 5 i te -20, ka -25.
\left(2m-5\right)x=10m-25
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(2m-5\right)x}{2m-5}=\frac{10m-25}{2m-5}
Whakawehea ngā taha e rua ki te -5+2m.
x=\frac{10m-25}{2m-5}
Mā te whakawehe ki te -5+2m ka wetekia te whakareanga ki te -5+2m.
x=5
Whakawehe 10m-25 ki te -5+2m.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}