Whakaoti mō c
c=-\frac{50\left(x-20\right)}{90-x}
x\neq 90
Whakaoti mō x
x=-\frac{10\left(9c-100\right)}{50-c}
c\neq 50
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(-\frac{1}{50}x+\frac{9}{5}\right)\left(c-0\right)=20-x
Whakareatia ngā taha e rua o te whārite ki te 2\left(-x+90\right).
-\frac{1}{50}x\left(c-0\right)+\frac{9}{5}\left(c-0\right)=20-x
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{50}x+\frac{9}{5} ki te c-0.
-\frac{1}{50}cx+\frac{9}{5}c=-x+20
Whakaraupapatia anō ngā kīanga tau.
\left(-\frac{1}{50}x+\frac{9}{5}\right)c=-x+20
Pahekotia ngā kīanga tau katoa e whai ana i te c.
\left(-\frac{x}{50}+\frac{9}{5}\right)c=20-x
He hanga arowhānui tō te whārite.
\frac{\left(-\frac{x}{50}+\frac{9}{5}\right)c}{-\frac{x}{50}+\frac{9}{5}}=\frac{20-x}{-\frac{x}{50}+\frac{9}{5}}
Whakawehea ngā taha e rua ki te -\frac{1}{50}x+\frac{9}{5}.
c=\frac{20-x}{-\frac{x}{50}+\frac{9}{5}}
Mā te whakawehe ki te -\frac{1}{50}x+\frac{9}{5} ka wetekia te whakareanga ki te -\frac{1}{50}x+\frac{9}{5}.
c=\frac{50\left(20-x\right)}{90-x}
Whakawehe -x+20 ki te -\frac{1}{50}x+\frac{9}{5}.
\left(-\frac{1}{50}x+\frac{9}{5}\right)\left(c-0\right)=20-x
Tē taea kia ōrite te tāupe x ki 90 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 2\left(-x+90\right).
-\frac{1}{50}x\left(c-0\right)+\frac{9}{5}\left(c-0\right)=20-x
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{50}x+\frac{9}{5} ki te c-0.
-\frac{1}{50}x\left(c-0\right)+\frac{9}{5}\left(c-0\right)+x=20
Me tāpiri te x ki ngā taha e rua.
-\frac{1}{50}x\left(c-0\right)+x=20-\frac{9}{5}\left(c-0\right)
Tangohia te \frac{9}{5}\left(c-0\right) mai i ngā taha e rua.
-\frac{1}{50}cx+x=20-\frac{9}{5}c
Whakaraupapatia anō ngā kīanga tau.
\left(-\frac{1}{50}c+1\right)x=20-\frac{9}{5}c
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(-\frac{c}{50}+1\right)x=-\frac{9c}{5}+20
He hanga arowhānui tō te whārite.
\frac{\left(-\frac{c}{50}+1\right)x}{-\frac{c}{50}+1}=\frac{-\frac{9c}{5}+20}{-\frac{c}{50}+1}
Whakawehea ngā taha e rua ki te -\frac{1}{50}c+1.
x=\frac{-\frac{9c}{5}+20}{-\frac{c}{50}+1}
Mā te whakawehe ki te -\frac{1}{50}c+1 ka wetekia te whakareanga ki te -\frac{1}{50}c+1.
x=\frac{10\left(100-9c\right)}{50-c}
Whakawehe 20-\frac{9c}{5} ki te -\frac{1}{50}c+1.
x=\frac{10\left(100-9c\right)}{50-c}\text{, }x\neq 90
Tē taea kia ōrite te tāupe x ki 90.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}