\frac{ A }{ { x }^{ } } + \frac{ B }{ { y }^{ 2 } } = 9
Whakaoti mō A
A=-\frac{Bx}{y^{2}}+9x
x\neq 0\text{ and }y\neq 0
Whakaoti mō B
B=-\frac{\left(A-9x\right)y^{2}}{x}
x\neq 0\text{ and }y\neq 0
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac{ A }{ { x }^{ } } + \frac{ B }{ { y }^{ 2 } } = 9
Tohaina
Kua tāruatia ki te papatopenga
y^{2}A+xB=9xy^{2}
Me whakarea ngā taha e rua o te whārite ki te xy^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{1},y^{2}.
y^{2}A=9xy^{2}-xB
Tangohia te xB mai i ngā taha e rua.
y^{2}A=9xy^{2}-Bx
He hanga arowhānui tō te whārite.
\frac{y^{2}A}{y^{2}}=\frac{x\left(9y^{2}-B\right)}{y^{2}}
Whakawehea ngā taha e rua ki te y^{2}.
A=\frac{x\left(9y^{2}-B\right)}{y^{2}}
Mā te whakawehe ki te y^{2} ka wetekia te whakareanga ki te y^{2}.
A=-\frac{Bx}{y^{2}}+9x
Whakawehe x\left(9y^{2}-B\right) ki te y^{2}.
y^{2}A+xB=9xy^{2}
Me whakarea ngā taha e rua o te whārite ki te xy^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{1},y^{2}.
xB=9xy^{2}-y^{2}A
Tangohia te y^{2}A mai i ngā taha e rua.
Bx=9xy^{2}-Ay^{2}
Whakaraupapatia anō ngā kīanga tau.
xB=9xy^{2}-Ay^{2}
He hanga arowhānui tō te whārite.
\frac{xB}{x}=\frac{\left(9x-A\right)y^{2}}{x}
Whakawehea ngā taha e rua ki te x.
B=\frac{\left(9x-A\right)y^{2}}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}