Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+40\right)\times 90-\left(x+90\right)\times 40=0\times 2\left(x+40\right)\left(x+90\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -90,-40 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x+40\right)\left(x+90\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+90,x+40.
90x+3600-\left(x+90\right)\times 40=0\times 2\left(x+40\right)\left(x+90\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+40 ki te 90.
90x+3600-\left(40x+3600\right)=0\times 2\left(x+40\right)\left(x+90\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+90 ki te 40.
90x+3600-40x-3600=0\times 2\left(x+40\right)\left(x+90\right)
Hei kimi i te tauaro o 40x+3600, kimihia te tauaro o ia taurangi.
50x+3600-3600=0\times 2\left(x+40\right)\left(x+90\right)
Pahekotia te 90x me -40x, ka 50x.
50x=0\times 2\left(x+40\right)\left(x+90\right)
Tangohia te 3600 i te 3600, ka 0.
50x=0\left(x+40\right)\left(x+90\right)
Whakareatia te 0 ki te 2, ka 0.
50x=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
x=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te 50 e ōrite ki 0, me ōrite pū te x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}