Whakaoti mō x
x=1
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\left(9-3x\right)=15-9x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 9x, arā, te tauraro pātahi he tino iti rawa te kitea o 9,9x.
9x-3x^{2}=15-9x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 9-3x.
9x-3x^{2}-15=-9x
Tangohia te 15 mai i ngā taha e rua.
9x-3x^{2}-15+9x=0
Me tāpiri te 9x ki ngā taha e rua.
18x-3x^{2}-15=0
Pahekotia te 9x me 9x, ka 18x.
-3x^{2}+18x-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{18^{2}-4\left(-3\right)\left(-15\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 18 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-3\right)\left(-15\right)}}{2\left(-3\right)}
Pūrua 18.
x=\frac{-18±\sqrt{324+12\left(-15\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-18±\sqrt{324-180}}{2\left(-3\right)}
Whakareatia 12 ki te -15.
x=\frac{-18±\sqrt{144}}{2\left(-3\right)}
Tāpiri 324 ki te -180.
x=\frac{-18±12}{2\left(-3\right)}
Tuhia te pūtakerua o te 144.
x=\frac{-18±12}{-6}
Whakareatia 2 ki te -3.
x=-\frac{6}{-6}
Nā, me whakaoti te whārite x=\frac{-18±12}{-6} ina he tāpiri te ±. Tāpiri -18 ki te 12.
x=1
Whakawehe -6 ki te -6.
x=-\frac{30}{-6}
Nā, me whakaoti te whārite x=\frac{-18±12}{-6} ina he tango te ±. Tango 12 mai i -18.
x=5
Whakawehe -30 ki te -6.
x=1 x=5
Kua oti te whārite te whakatau.
x\left(9-3x\right)=15-9x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 9x, arā, te tauraro pātahi he tino iti rawa te kitea o 9,9x.
9x-3x^{2}=15-9x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 9-3x.
9x-3x^{2}+9x=15
Me tāpiri te 9x ki ngā taha e rua.
18x-3x^{2}=15
Pahekotia te 9x me 9x, ka 18x.
-3x^{2}+18x=15
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}+18x}{-3}=\frac{15}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{18}{-3}x=\frac{15}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-6x=\frac{15}{-3}
Whakawehe 18 ki te -3.
x^{2}-6x=-5
Whakawehe 15 ki te -3.
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-5+9
Pūrua -3.
x^{2}-6x+9=4
Tāpiri -5 ki te 9.
\left(x-3\right)^{2}=4
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=2 x-3=-2
Whakarūnātia.
x=5 x=1
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}