Whakaoti mō x
x = -\frac{34}{13} = -2\frac{8}{13} \approx -2.615384615
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(8x+2\right)+48=3\left(2x-4\right)
Me whakarea ngā taha e rua o te whārite ki te 24, arā, te tauraro pātahi he tino iti rawa te kitea o 6,8.
32x+8+48=3\left(2x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 8x+2.
32x+56=3\left(2x-4\right)
Tāpirihia te 8 ki te 48, ka 56.
32x+56=6x-12
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-4.
32x+56-6x=-12
Tangohia te 6x mai i ngā taha e rua.
26x+56=-12
Pahekotia te 32x me -6x, ka 26x.
26x=-12-56
Tangohia te 56 mai i ngā taha e rua.
26x=-68
Tangohia te 56 i te -12, ka -68.
x=\frac{-68}{26}
Whakawehea ngā taha e rua ki te 26.
x=-\frac{34}{13}
Whakahekea te hautanga \frac{-68}{26} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}