Aromātai
\frac{7}{12}\approx 0.583333333
Tauwehe
\frac{7}{2 ^ {2} \cdot 3} = 0.5833333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{8\times \frac{5\sqrt{41}}{\left(\sqrt{41}\right)^{2}}-3\times \frac{4}{\sqrt{41}}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Whakangāwaritia te tauraro o \frac{5}{\sqrt{41}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{41}.
\frac{8\times \frac{5\sqrt{41}}{41}-3\times \frac{4}{\sqrt{41}}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Ko te pūrua o \sqrt{41} ko 41.
\frac{\frac{8\times 5\sqrt{41}}{41}-3\times \frac{4}{\sqrt{41}}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Tuhia te 8\times \frac{5\sqrt{41}}{41} hei hautanga kotahi.
\frac{\frac{8\times 5\sqrt{41}}{41}-3\times \frac{4\sqrt{41}}{\left(\sqrt{41}\right)^{2}}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{41}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{41}.
\frac{\frac{8\times 5\sqrt{41}}{41}-3\times \frac{4\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Ko te pūrua o \sqrt{41} ko 41.
\frac{\frac{8\times 5\sqrt{41}}{41}-\frac{3\times 4\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Tuhia te 3\times \frac{4\sqrt{41}}{41} hei hautanga kotahi.
\frac{\frac{8\times 5\sqrt{41}}{41}-\frac{12\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Whakareatia te 3 ki te 4, ka 12.
\frac{\frac{8\times 5\sqrt{41}-12\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Tā te mea he rite te tauraro o \frac{8\times 5\sqrt{41}}{41} me \frac{12\sqrt{41}}{41}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{40\sqrt{41}-12\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Mahia ngā whakarea i roto o 8\times 5\sqrt{41}-12\sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Mahia ngā tātaitai i roto o 40\sqrt{41}-12\sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{8\times \frac{5\sqrt{41}}{\left(\sqrt{41}\right)^{2}}+2\times \frac{4}{\sqrt{41}}}
Whakangāwaritia te tauraro o \frac{5}{\sqrt{41}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{8\times \frac{5\sqrt{41}}{41}+2\times \frac{4}{\sqrt{41}}}
Ko te pūrua o \sqrt{41} ko 41.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}}{41}+2\times \frac{4}{\sqrt{41}}}
Tuhia te 8\times \frac{5\sqrt{41}}{41} hei hautanga kotahi.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}}{41}+2\times \frac{4\sqrt{41}}{\left(\sqrt{41}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{41}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}}{41}+2\times \frac{4\sqrt{41}}{41}}
Ko te pūrua o \sqrt{41} ko 41.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}}{41}+\frac{2\times 4\sqrt{41}}{41}}
Tuhia te 2\times \frac{4\sqrt{41}}{41} hei hautanga kotahi.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}+2\times 4\sqrt{41}}{41}}
Tā te mea he rite te tauraro o \frac{8\times 5\sqrt{41}}{41} me \frac{2\times 4\sqrt{41}}{41}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{28\sqrt{41}}{41}}{\frac{40\sqrt{41}+8\sqrt{41}}{41}}
Mahia ngā whakarea i roto o 8\times 5\sqrt{41}+2\times 4\sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{\frac{48\sqrt{41}}{41}}
Mahia ngā tātaitai i roto o 40\sqrt{41}+8\sqrt{41}.
\frac{28\sqrt{41}\times 41}{41\times 48\sqrt{41}}
Whakawehe \frac{28\sqrt{41}}{41} ki te \frac{48\sqrt{41}}{41} mā te whakarea \frac{28\sqrt{41}}{41} ki te tau huripoki o \frac{48\sqrt{41}}{41}.
\frac{7}{12}
Me whakakore tahi te 4\times 41\sqrt{41} i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}