Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+4\right)\times 8-x\times 3=5x\left(x+4\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -4,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+4.
8x+32-x\times 3=5x\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+4 ki te 8.
8x+32-x\times 3=5x^{2}+20x
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x+4.
8x+32-x\times 3-5x^{2}=20x
Tangohia te 5x^{2} mai i ngā taha e rua.
8x+32-x\times 3-5x^{2}-20x=0
Tangohia te 20x mai i ngā taha e rua.
-12x+32-x\times 3-5x^{2}=0
Pahekotia te 8x me -20x, ka -12x.
-12x+32-3x-5x^{2}=0
Whakareatia te -1 ki te 3, ka -3.
-15x+32-5x^{2}=0
Pahekotia te -12x me -3x, ka -15x.
-5x^{2}-15x+32=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-5\right)\times 32}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, -15 mō b, me 32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-5\right)\times 32}}{2\left(-5\right)}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225+20\times 32}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{-\left(-15\right)±\sqrt{225+640}}{2\left(-5\right)}
Whakareatia 20 ki te 32.
x=\frac{-\left(-15\right)±\sqrt{865}}{2\left(-5\right)}
Tāpiri 225 ki te 640.
x=\frac{15±\sqrt{865}}{2\left(-5\right)}
Ko te tauaro o -15 ko 15.
x=\frac{15±\sqrt{865}}{-10}
Whakareatia 2 ki te -5.
x=\frac{\sqrt{865}+15}{-10}
Nā, me whakaoti te whārite x=\frac{15±\sqrt{865}}{-10} ina he tāpiri te ±. Tāpiri 15 ki te \sqrt{865}.
x=-\frac{\sqrt{865}}{10}-\frac{3}{2}
Whakawehe 15+\sqrt{865} ki te -10.
x=\frac{15-\sqrt{865}}{-10}
Nā, me whakaoti te whārite x=\frac{15±\sqrt{865}}{-10} ina he tango te ±. Tango \sqrt{865} mai i 15.
x=\frac{\sqrt{865}}{10}-\frac{3}{2}
Whakawehe 15-\sqrt{865} ki te -10.
x=-\frac{\sqrt{865}}{10}-\frac{3}{2} x=\frac{\sqrt{865}}{10}-\frac{3}{2}
Kua oti te whārite te whakatau.
\left(x+4\right)\times 8-x\times 3=5x\left(x+4\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -4,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+4.
8x+32-x\times 3=5x\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+4 ki te 8.
8x+32-x\times 3=5x^{2}+20x
Whakamahia te āhuatanga tohatoha hei whakarea te 5x ki te x+4.
8x+32-x\times 3-5x^{2}=20x
Tangohia te 5x^{2} mai i ngā taha e rua.
8x+32-x\times 3-5x^{2}-20x=0
Tangohia te 20x mai i ngā taha e rua.
-12x+32-x\times 3-5x^{2}=0
Pahekotia te 8x me -20x, ka -12x.
-12x-x\times 3-5x^{2}=-32
Tangohia te 32 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-12x-3x-5x^{2}=-32
Whakareatia te -1 ki te 3, ka -3.
-15x-5x^{2}=-32
Pahekotia te -12x me -3x, ka -15x.
-5x^{2}-15x=-32
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-5x^{2}-15x}{-5}=-\frac{32}{-5}
Whakawehea ngā taha e rua ki te -5.
x^{2}+\left(-\frac{15}{-5}\right)x=-\frac{32}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x^{2}+3x=-\frac{32}{-5}
Whakawehe -15 ki te -5.
x^{2}+3x=\frac{32}{5}
Whakawehe -32 ki te -5.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{32}{5}+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=\frac{32}{5}+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{173}{20}
Tāpiri \frac{32}{5} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{2}\right)^{2}=\frac{173}{20}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{173}{20}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{\sqrt{865}}{10} x+\frac{3}{2}=-\frac{\sqrt{865}}{10}
Whakarūnātia.
x=\frac{\sqrt{865}}{10}-\frac{3}{2} x=-\frac{\sqrt{865}}{10}-\frac{3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.