Whakaoti mō y
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{4}{3}=\frac{2y+4}{7.5}
Whakahekea te hautanga \frac{8}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{4}{3}=\frac{2y}{7.5}+\frac{4}{7.5}
Whakawehea ia wā o 2y+4 ki te 7.5, kia riro ko \frac{2y}{7.5}+\frac{4}{7.5}.
\frac{4}{3}=\frac{4}{15}y+\frac{4}{7.5}
Whakawehea te 2y ki te 7.5, kia riro ko \frac{4}{15}y.
\frac{4}{3}=\frac{4}{15}y+\frac{40}{75}
Whakarohaina te \frac{4}{7.5} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{4}{3}=\frac{4}{15}y+\frac{8}{15}
Whakahekea te hautanga \frac{40}{75} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{4}{15}y+\frac{8}{15}=\frac{4}{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{4}{15}y=\frac{4}{3}-\frac{8}{15}
Tangohia te \frac{8}{15} mai i ngā taha e rua.
\frac{4}{15}y=\frac{20}{15}-\frac{8}{15}
Ko te maha noa iti rawa atu o 3 me 15 ko 15. Me tahuri \frac{4}{3} me \frac{8}{15} ki te hautau me te tautūnga 15.
\frac{4}{15}y=\frac{20-8}{15}
Tā te mea he rite te tauraro o \frac{20}{15} me \frac{8}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{4}{15}y=\frac{12}{15}
Tangohia te 8 i te 20, ka 12.
\frac{4}{15}y=\frac{4}{5}
Whakahekea te hautanga \frac{12}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
y=\frac{\frac{4}{5}}{\frac{4}{15}}
Whakawehea ngā taha e rua ki te \frac{4}{15}.
y=\frac{4}{5\times \frac{4}{15}}
Tuhia te \frac{\frac{4}{5}}{\frac{4}{15}} hei hautanga kotahi.
y=\frac{4}{\frac{4}{3}}
Whakareatia te 5 ki te \frac{4}{15}, ka \frac{4}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}