Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{8}{2-\sqrt{2}}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\frac{8\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{8}{2-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{2}.
\frac{8\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\left(2+\sqrt{2}\right)}{4-2}
Pūrua 2. Pūrua \sqrt{2}.
\frac{8\left(2+\sqrt{2}\right)}{2}
Tangohia te 2 i te 4, ka 2.
4\left(2+\sqrt{2}\right)
Whakawehea te 8\left(2+\sqrt{2}\right) ki te 2, kia riro ko 4\left(2+\sqrt{2}\right).
8+4\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2+\sqrt{2}.