Aromātai
\frac{2\sqrt{157}}{2355}\approx 0.010641158
Tohaina
Kua tāruatia ki te papatopenga
\frac{8}{\sqrt{628\times 900}}
Whakareatia te 2 ki te 314, ka 628.
\frac{8}{\sqrt{565200}}
Whakareatia te 628 ki te 900, ka 565200.
\frac{8}{60\sqrt{157}}
Tauwehea te 565200=60^{2}\times 157. Tuhia anō te pūtake rua o te hua \sqrt{60^{2}\times 157} hei hua o ngā pūtake rua \sqrt{60^{2}}\sqrt{157}. Tuhia te pūtakerua o te 60^{2}.
\frac{8\sqrt{157}}{60\left(\sqrt{157}\right)^{2}}
Whakangāwaritia te tauraro o \frac{8}{60\sqrt{157}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{157}.
\frac{8\sqrt{157}}{60\times 157}
Ko te pūrua o \sqrt{157} ko 157.
\frac{2\sqrt{157}}{15\times 157}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{2\sqrt{157}}{2355}
Whakareatia te 15 ki te 157, ka 2355.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}