Whakaoti mō a
a=\frac{76}{\left(15-h\right)^{3}+k}
h\neq \sqrt[3]{k}+15
Whakaoti mō h
h=-\sqrt[3]{-k+\frac{76}{a}}+15
a\neq 0
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac{ 76 }{ a } = { \left(15-h \right) }^{ 3 } +k
Tohaina
Kua tāruatia ki te papatopenga
76=a\left(15-h\right)^{3}+ak
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te a.
76=a\left(3375-675h+45h^{2}-h^{3}\right)+ak
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(15-h\right)^{3}.
76=3375a-675ah+45ah^{2}-ah^{3}+ak
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te 3375-675h+45h^{2}-h^{3}.
3375a-675ah+45ah^{2}-ah^{3}+ak=76
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(3375-675h+45h^{2}-h^{3}+k\right)a=76
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(3375+k-675h+45h^{2}-h^{3}\right)a=76
He hanga arowhānui tō te whārite.
\frac{\left(3375+k-675h+45h^{2}-h^{3}\right)a}{3375+k-675h+45h^{2}-h^{3}}=\frac{76}{3375+k-675h+45h^{2}-h^{3}}
Whakawehea ngā taha e rua ki te 3375-675h+45h^{2}-h^{3}+k.
a=\frac{76}{3375+k-675h+45h^{2}-h^{3}}
Mā te whakawehe ki te 3375-675h+45h^{2}-h^{3}+k ka wetekia te whakareanga ki te 3375-675h+45h^{2}-h^{3}+k.
a=\frac{76}{3375+k-675h+45h^{2}-h^{3}}\text{, }a\neq 0
Tē taea kia ōrite te tāupe a ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}