Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image
Whakaoti mō h
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

76=a\left(15-h\right)^{3}+ak
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te a.
76=a\left(3375-675h+45h^{2}-h^{3}\right)+ak
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(15-h\right)^{3}.
76=3375a-675ah+45ah^{2}-ah^{3}+ak
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te 3375-675h+45h^{2}-h^{3}.
3375a-675ah+45ah^{2}-ah^{3}+ak=76
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(3375-675h+45h^{2}-h^{3}+k\right)a=76
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(3375+k-675h+45h^{2}-h^{3}\right)a=76
He hanga arowhānui tō te whārite.
\frac{\left(3375+k-675h+45h^{2}-h^{3}\right)a}{3375+k-675h+45h^{2}-h^{3}}=\frac{76}{3375+k-675h+45h^{2}-h^{3}}
Whakawehea ngā taha e rua ki te 3375-675h+45h^{2}-h^{3}+k.
a=\frac{76}{3375+k-675h+45h^{2}-h^{3}}
Mā te whakawehe ki te 3375-675h+45h^{2}-h^{3}+k ka wetekia te whakareanga ki te 3375-675h+45h^{2}-h^{3}+k.
a=\frac{76}{3375+k-675h+45h^{2}-h^{3}}\text{, }a\neq 0
Tē taea kia ōrite te tāupe a ki 0.