Whakaoti mō x
x=\frac{1}{54}\approx 0.018518519
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times 72=12\times \frac{1}{9}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12x, arā, te tauraro pātahi he tino iti rawa te kitea o 12,x.
x\times 72=\frac{12}{9}
Whakareatia te 12 ki te \frac{1}{9}, ka \frac{12}{9}.
x\times 72=\frac{4}{3}
Whakahekea te hautanga \frac{12}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x=\frac{\frac{4}{3}}{72}
Whakawehea ngā taha e rua ki te 72.
x=\frac{4}{3\times 72}
Tuhia te \frac{\frac{4}{3}}{72} hei hautanga kotahi.
x=\frac{4}{216}
Whakareatia te 3 ki te 72, ka 216.
x=\frac{1}{54}
Whakahekea te hautanga \frac{4}{216} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}