Whakaoti mō x
x = \frac{7 \sqrt{401} + 7}{4} \approx 36.79372269
x=\frac{7-7\sqrt{401}}{4}\approx -33.29372269
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-35\right)\times 70+\left(x+35\right)\times 70=40\left(x-35\right)\left(x+35\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -35,35 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-35\right)\left(x+35\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+35,x-35.
70x-2450+\left(x+35\right)\times 70=40\left(x-35\right)\left(x+35\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-35 ki te 70.
70x-2450+70x+2450=40\left(x-35\right)\left(x+35\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+35 ki te 70.
140x-2450+2450=40\left(x-35\right)\left(x+35\right)
Pahekotia te 70x me 70x, ka 140x.
140x=40\left(x-35\right)\left(x+35\right)
Tāpirihia te -2450 ki te 2450, ka 0.
140x=\left(40x-1400\right)\left(x+35\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 40 ki te x-35.
140x=40x^{2}-49000
Whakamahia te āhuatanga tuaritanga hei whakarea te 40x-1400 ki te x+35 ka whakakotahi i ngā kupu rite.
140x-40x^{2}=-49000
Tangohia te 40x^{2} mai i ngā taha e rua.
140x-40x^{2}+49000=0
Me tāpiri te 49000 ki ngā taha e rua.
-40x^{2}+140x+49000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-140±\sqrt{140^{2}-4\left(-40\right)\times 49000}}{2\left(-40\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -40 mō a, 140 mō b, me 49000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-140±\sqrt{19600-4\left(-40\right)\times 49000}}{2\left(-40\right)}
Pūrua 140.
x=\frac{-140±\sqrt{19600+160\times 49000}}{2\left(-40\right)}
Whakareatia -4 ki te -40.
x=\frac{-140±\sqrt{19600+7840000}}{2\left(-40\right)}
Whakareatia 160 ki te 49000.
x=\frac{-140±\sqrt{7859600}}{2\left(-40\right)}
Tāpiri 19600 ki te 7840000.
x=\frac{-140±140\sqrt{401}}{2\left(-40\right)}
Tuhia te pūtakerua o te 7859600.
x=\frac{-140±140\sqrt{401}}{-80}
Whakareatia 2 ki te -40.
x=\frac{140\sqrt{401}-140}{-80}
Nā, me whakaoti te whārite x=\frac{-140±140\sqrt{401}}{-80} ina he tāpiri te ±. Tāpiri -140 ki te 140\sqrt{401}.
x=\frac{7-7\sqrt{401}}{4}
Whakawehe -140+140\sqrt{401} ki te -80.
x=\frac{-140\sqrt{401}-140}{-80}
Nā, me whakaoti te whārite x=\frac{-140±140\sqrt{401}}{-80} ina he tango te ±. Tango 140\sqrt{401} mai i -140.
x=\frac{7\sqrt{401}+7}{4}
Whakawehe -140-140\sqrt{401} ki te -80.
x=\frac{7-7\sqrt{401}}{4} x=\frac{7\sqrt{401}+7}{4}
Kua oti te whārite te whakatau.
\left(x-35\right)\times 70+\left(x+35\right)\times 70=40\left(x-35\right)\left(x+35\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -35,35 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-35\right)\left(x+35\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+35,x-35.
70x-2450+\left(x+35\right)\times 70=40\left(x-35\right)\left(x+35\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-35 ki te 70.
70x-2450+70x+2450=40\left(x-35\right)\left(x+35\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+35 ki te 70.
140x-2450+2450=40\left(x-35\right)\left(x+35\right)
Pahekotia te 70x me 70x, ka 140x.
140x=40\left(x-35\right)\left(x+35\right)
Tāpirihia te -2450 ki te 2450, ka 0.
140x=\left(40x-1400\right)\left(x+35\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 40 ki te x-35.
140x=40x^{2}-49000
Whakamahia te āhuatanga tuaritanga hei whakarea te 40x-1400 ki te x+35 ka whakakotahi i ngā kupu rite.
140x-40x^{2}=-49000
Tangohia te 40x^{2} mai i ngā taha e rua.
-40x^{2}+140x=-49000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-40x^{2}+140x}{-40}=-\frac{49000}{-40}
Whakawehea ngā taha e rua ki te -40.
x^{2}+\frac{140}{-40}x=-\frac{49000}{-40}
Mā te whakawehe ki te -40 ka wetekia te whakareanga ki te -40.
x^{2}-\frac{7}{2}x=-\frac{49000}{-40}
Whakahekea te hautanga \frac{140}{-40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
x^{2}-\frac{7}{2}x=1225
Whakawehe -49000 ki te -40.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=1225+\left(-\frac{7}{4}\right)^{2}
Whakawehea te -\frac{7}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{4}. Nā, tāpiria te pūrua o te -\frac{7}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{2}x+\frac{49}{16}=1225+\frac{49}{16}
Pūruatia -\frac{7}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{19649}{16}
Tāpiri 1225 ki te \frac{49}{16}.
\left(x-\frac{7}{4}\right)^{2}=\frac{19649}{16}
Tauwehea x^{2}-\frac{7}{2}x+\frac{49}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{19649}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{4}=\frac{7\sqrt{401}}{4} x-\frac{7}{4}=-\frac{7\sqrt{401}}{4}
Whakarūnātia.
x=\frac{7\sqrt{401}+7}{4} x=\frac{7-7\sqrt{401}}{4}
Me tāpiri \frac{7}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}