Aromātai
\frac{26}{27}\approx 0.962962963
Tauwehe
\frac{2 \cdot 13}{3 ^ {3}} = 0.9629629629629629
Tohaina
Kua tāruatia ki te papatopenga
\frac{7}{9}+\frac{8}{27}-\sqrt{\frac{1}{81}}
Tātaihia te \frac{2}{3} mā te pū o 3, kia riro ko \frac{8}{27}.
\frac{21}{27}+\frac{8}{27}-\sqrt{\frac{1}{81}}
Ko te maha noa iti rawa atu o 9 me 27 ko 27. Me tahuri \frac{7}{9} me \frac{8}{27} ki te hautau me te tautūnga 27.
\frac{21+8}{27}-\sqrt{\frac{1}{81}}
Tā te mea he rite te tauraro o \frac{21}{27} me \frac{8}{27}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{29}{27}-\sqrt{\frac{1}{81}}
Tāpirihia te 21 ki te 8, ka 29.
\frac{29}{27}-\frac{1}{9}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{81} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{81}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{29}{27}-\frac{3}{27}
Ko te maha noa iti rawa atu o 27 me 9 ko 27. Me tahuri \frac{29}{27} me \frac{1}{9} ki te hautau me te tautūnga 27.
\frac{29-3}{27}
Tā te mea he rite te tauraro o \frac{29}{27} me \frac{3}{27}, me tango rāua mā te tango i ō raua taurunga.
\frac{26}{27}
Tangohia te 3 i te 29, ka 26.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}