Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{7\left(3-\sqrt{2}\right)}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}+\frac{7}{3-\sqrt{2}}
Whakangāwaritia te tauraro o \frac{7}{3+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 3-\sqrt{2}.
\frac{7\left(3-\sqrt{2}\right)}{3^{2}-\left(\sqrt{2}\right)^{2}}+\frac{7}{3-\sqrt{2}}
Whakaarohia te \left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(3-\sqrt{2}\right)}{9-2}+\frac{7}{3-\sqrt{2}}
Pūrua 3. Pūrua \sqrt{2}.
\frac{7\left(3-\sqrt{2}\right)}{7}+\frac{7}{3-\sqrt{2}}
Tangohia te 2 i te 9, ka 7.
3-\sqrt{2}+\frac{7}{3-\sqrt{2}}
Me whakakore te 7 me te 7.
3-\sqrt{2}+\frac{7\left(3+\sqrt{2}\right)}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{7}{3-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 3+\sqrt{2}.
3-\sqrt{2}+\frac{7\left(3+\sqrt{2}\right)}{3^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3-\sqrt{2}+\frac{7\left(3+\sqrt{2}\right)}{9-2}
Pūrua 3. Pūrua \sqrt{2}.
3-\sqrt{2}+\frac{7\left(3+\sqrt{2}\right)}{7}
Tangohia te 2 i te 9, ka 7.
3-\sqrt{2}+3+\sqrt{2}
Me whakakore te 7 me te 7.
6-\sqrt{2}+\sqrt{2}
Tāpirihia te 3 ki te 3, ka 6.
6
Pahekotia te -\sqrt{2} me \sqrt{2}, ka 0.