Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{7\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{7}{\sqrt{3}-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}+\sqrt{2}.
\frac{7\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(\sqrt{3}+\sqrt{2}\right)}{3-2}
Pūrua \sqrt{3}. Pūrua \sqrt{2}.
\frac{7\left(\sqrt{3}+\sqrt{2}\right)}{1}
Tangohia te 2 i te 3, ka 1.
7\left(\sqrt{3}+\sqrt{2}\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
7\sqrt{3}+7\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te \sqrt{3}+\sqrt{2}.