Whakaoti mō x
x=-5
x=20
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-10\right)\times 60+\left(x+10\right)\times 60=8\left(x-10\right)\left(x+10\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -10,10 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-10\right)\left(x+10\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+10,x-10.
60x-600+\left(x+10\right)\times 60=8\left(x-10\right)\left(x+10\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-10 ki te 60.
60x-600+60x+600=8\left(x-10\right)\left(x+10\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+10 ki te 60.
120x-600+600=8\left(x-10\right)\left(x+10\right)
Pahekotia te 60x me 60x, ka 120x.
120x=8\left(x-10\right)\left(x+10\right)
Tāpirihia te -600 ki te 600, ka 0.
120x=\left(8x-80\right)\left(x+10\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te x-10.
120x=8x^{2}-800
Whakamahia te āhuatanga tuaritanga hei whakarea te 8x-80 ki te x+10 ka whakakotahi i ngā kupu rite.
120x-8x^{2}=-800
Tangohia te 8x^{2} mai i ngā taha e rua.
120x-8x^{2}+800=0
Me tāpiri te 800 ki ngā taha e rua.
-8x^{2}+120x+800=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-120±\sqrt{120^{2}-4\left(-8\right)\times 800}}{2\left(-8\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -8 mō a, 120 mō b, me 800 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-120±\sqrt{14400-4\left(-8\right)\times 800}}{2\left(-8\right)}
Pūrua 120.
x=\frac{-120±\sqrt{14400+32\times 800}}{2\left(-8\right)}
Whakareatia -4 ki te -8.
x=\frac{-120±\sqrt{14400+25600}}{2\left(-8\right)}
Whakareatia 32 ki te 800.
x=\frac{-120±\sqrt{40000}}{2\left(-8\right)}
Tāpiri 14400 ki te 25600.
x=\frac{-120±200}{2\left(-8\right)}
Tuhia te pūtakerua o te 40000.
x=\frac{-120±200}{-16}
Whakareatia 2 ki te -8.
x=\frac{80}{-16}
Nā, me whakaoti te whārite x=\frac{-120±200}{-16} ina he tāpiri te ±. Tāpiri -120 ki te 200.
x=-5
Whakawehe 80 ki te -16.
x=-\frac{320}{-16}
Nā, me whakaoti te whārite x=\frac{-120±200}{-16} ina he tango te ±. Tango 200 mai i -120.
x=20
Whakawehe -320 ki te -16.
x=-5 x=20
Kua oti te whārite te whakatau.
\left(x-10\right)\times 60+\left(x+10\right)\times 60=8\left(x-10\right)\left(x+10\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -10,10 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-10\right)\left(x+10\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+10,x-10.
60x-600+\left(x+10\right)\times 60=8\left(x-10\right)\left(x+10\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-10 ki te 60.
60x-600+60x+600=8\left(x-10\right)\left(x+10\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+10 ki te 60.
120x-600+600=8\left(x-10\right)\left(x+10\right)
Pahekotia te 60x me 60x, ka 120x.
120x=8\left(x-10\right)\left(x+10\right)
Tāpirihia te -600 ki te 600, ka 0.
120x=\left(8x-80\right)\left(x+10\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te x-10.
120x=8x^{2}-800
Whakamahia te āhuatanga tuaritanga hei whakarea te 8x-80 ki te x+10 ka whakakotahi i ngā kupu rite.
120x-8x^{2}=-800
Tangohia te 8x^{2} mai i ngā taha e rua.
-8x^{2}+120x=-800
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-8x^{2}+120x}{-8}=-\frac{800}{-8}
Whakawehea ngā taha e rua ki te -8.
x^{2}+\frac{120}{-8}x=-\frac{800}{-8}
Mā te whakawehe ki te -8 ka wetekia te whakareanga ki te -8.
x^{2}-15x=-\frac{800}{-8}
Whakawehe 120 ki te -8.
x^{2}-15x=100
Whakawehe -800 ki te -8.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=100+\left(-\frac{15}{2}\right)^{2}
Whakawehea te -15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{2}. Nā, tāpiria te pūrua o te -\frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-15x+\frac{225}{4}=100+\frac{225}{4}
Pūruatia -\frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-15x+\frac{225}{4}=\frac{625}{4}
Tāpiri 100 ki te \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=\frac{625}{4}
Tauwehea x^{2}-15x+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{2}=\frac{25}{2} x-\frac{15}{2}=-\frac{25}{2}
Whakarūnātia.
x=20 x=-5
Me tāpiri \frac{15}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}