\frac{ 6 { a }^{ 2 } -6 { b }^{ 2 } }{ b-a } \frac{ 3 { a }^{ } +3 { b }^{ } }{ { a }^{ 2 } +2ab+ { b }^{ 2 } }
Aromātai
-18
Tauwehe
-18
Tohaina
Kua tāruatia ki te papatopenga
\frac{6\left(a+b\right)\left(a-b\right)}{-a+b}\times \frac{3a^{1}+3b^{1}}{a^{2}+2ab+b^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{6a^{2}-6b^{2}}{b-a}.
\frac{-6\left(a+b\right)\left(-a+b\right)}{-a+b}\times \frac{3a^{1}+3b^{1}}{a^{2}+2ab+b^{2}}
Unuhia te tohu tōraro i roto o a-b.
-6\left(a+b\right)\times \frac{3a^{1}+3b^{1}}{a^{2}+2ab+b^{2}}
Me whakakore tahi te -a+b i te taurunga me te tauraro.
\left(-6a-6b\right)\times \frac{3a^{1}+3b^{1}}{a^{2}+2ab+b^{2}}
Me whakaroha te kīanga.
\left(-6a-6b\right)\times \frac{3a+3b^{1}}{a^{2}+2ab+b^{2}}
Tātaihia te a mā te pū o 1, kia riro ko a.
\left(-6a-6b\right)\times \frac{3a+3b}{a^{2}+2ab+b^{2}}
Tātaihia te b mā te pū o 1, kia riro ko b.
\left(-6a-6b\right)\times \frac{3\left(a+b\right)}{\left(a+b\right)^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{3a+3b}{a^{2}+2ab+b^{2}}.
\left(-6a-6b\right)\times \frac{3}{a+b}
Me whakakore tahi te a+b i te taurunga me te tauraro.
\frac{\left(-6a-6b\right)\times 3}{a+b}
Tuhia te \left(-6a-6b\right)\times \frac{3}{a+b} hei hautanga kotahi.
\frac{3\times 6\left(-a-b\right)}{a+b}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-3\times 6\left(a+b\right)}{a+b}
Unuhia te tohu tōraro i roto o -a-b.
-3\times 6
Me whakakore tahi te a+b i te taurunga me te tauraro.
-18
Whakareatia te -3 ki te 6, ka -18.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}