Whakaoti mō x
x=-\frac{4}{15}\approx -0.266666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
7\times \frac{6\times 3+2}{3}+7x\left(-8\right)=-42\times \frac{5}{7}\times 7x+7x\left(-3\right)
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 7x, arā, te tauraro pātahi he tino iti rawa te kitea o x,7.
7\times \frac{18+2}{3}+7x\left(-8\right)=-42\times \frac{5}{7}\times 7x+7x\left(-3\right)
Whakareatia te 6 ki te 3, ka 18.
7\times \frac{20}{3}+7x\left(-8\right)=-42\times \frac{5}{7}\times 7x+7x\left(-3\right)
Tāpirihia te 18 ki te 2, ka 20.
\frac{7\times 20}{3}+7x\left(-8\right)=-42\times \frac{5}{7}\times 7x+7x\left(-3\right)
Tuhia te 7\times \frac{20}{3} hei hautanga kotahi.
\frac{140}{3}+7x\left(-8\right)=-42\times \frac{5}{7}\times 7x+7x\left(-3\right)
Whakareatia te 7 ki te 20, ka 140.
\frac{140}{3}-56x=-42\times \frac{5}{7}\times 7x+7x\left(-3\right)
Whakareatia te 7 ki te -8, ka -56.
\frac{140}{3}-56x=\frac{-42\times 5}{7}\times 7x+7x\left(-3\right)
Tuhia te -42\times \frac{5}{7} hei hautanga kotahi.
\frac{140}{3}-56x=\frac{-210}{7}\times 7x+7x\left(-3\right)
Whakareatia te -42 ki te 5, ka -210.
\frac{140}{3}-56x=-30\times 7x+7x\left(-3\right)
Whakawehea te -210 ki te 7, kia riro ko -30.
\frac{140}{3}-56x=-210x+7x\left(-3\right)
Whakareatia te -30 ki te 7, ka -210.
\frac{140}{3}-56x=-210x-21x
Whakareatia te 7 ki te -3, ka -21.
\frac{140}{3}-56x=-231x
Pahekotia te -210x me -21x, ka -231x.
\frac{140}{3}-56x+231x=0
Me tāpiri te 231x ki ngā taha e rua.
\frac{140}{3}+175x=0
Pahekotia te -56x me 231x, ka 175x.
175x=-\frac{140}{3}
Tangohia te \frac{140}{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-\frac{140}{3}}{175}
Whakawehea ngā taha e rua ki te 175.
x=\frac{-140}{3\times 175}
Tuhia te \frac{-\frac{140}{3}}{175} hei hautanga kotahi.
x=\frac{-140}{525}
Whakareatia te 3 ki te 175, ka 525.
x=-\frac{4}{15}
Whakahekea te hautanga \frac{-140}{525} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 35.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}