Whakaoti mō x
x = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
7\times \frac{6\times 3+2}{3}+7x\left(-8\right)=-4.2\times \frac{5}{7}\times 7x+7x\left(-3\right)
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 7x, arā, te tauraro pātahi he tino iti rawa te kitea o x,7.
7\times \frac{18+2}{3}+7x\left(-8\right)=-4.2\times \frac{5}{7}\times 7x+7x\left(-3\right)
Whakareatia te 6 ki te 3, ka 18.
7\times \frac{20}{3}+7x\left(-8\right)=-4.2\times \frac{5}{7}\times 7x+7x\left(-3\right)
Tāpirihia te 18 ki te 2, ka 20.
\frac{7\times 20}{3}+7x\left(-8\right)=-4.2\times \frac{5}{7}\times 7x+7x\left(-3\right)
Tuhia te 7\times \frac{20}{3} hei hautanga kotahi.
\frac{140}{3}+7x\left(-8\right)=-4.2\times \frac{5}{7}\times 7x+7x\left(-3\right)
Whakareatia te 7 ki te 20, ka 140.
\frac{140}{3}-56x=-4.2\times \frac{5}{7}\times 7x+7x\left(-3\right)
Whakareatia te 7 ki te -8, ka -56.
\frac{140}{3}-56x=-\frac{21}{5}\times \frac{5}{7}\times 7x+7x\left(-3\right)
Me tahuri ki tau ā-ira -4.2 ki te hautau -\frac{42}{10}. Whakahekea te hautanga -\frac{42}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{140}{3}-56x=\frac{-21\times 5}{5\times 7}\times 7x+7x\left(-3\right)
Me whakarea te -\frac{21}{5} ki te \frac{5}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{140}{3}-56x=\frac{-21}{7}\times 7x+7x\left(-3\right)
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{140}{3}-56x=-3\times 7x+7x\left(-3\right)
Whakawehea te -21 ki te 7, kia riro ko -3.
\frac{140}{3}-56x=-21x+7x\left(-3\right)
Whakareatia te -3 ki te 7, ka -21.
\frac{140}{3}-56x=-21x-21x
Whakareatia te 7 ki te -3, ka -21.
\frac{140}{3}-56x=-42x
Pahekotia te -21x me -21x, ka -42x.
\frac{140}{3}-56x+42x=0
Me tāpiri te 42x ki ngā taha e rua.
\frac{140}{3}-14x=0
Pahekotia te -56x me 42x, ka -14x.
-14x=-\frac{140}{3}
Tangohia te \frac{140}{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-\frac{140}{3}}{-14}
Whakawehea ngā taha e rua ki te -14.
x=\frac{-140}{3\left(-14\right)}
Tuhia te \frac{-\frac{140}{3}}{-14} hei hautanga kotahi.
x=\frac{-140}{-42}
Whakareatia te 3 ki te -14, ka -42.
x=\frac{10}{3}
Whakahekea te hautanga \frac{-140}{-42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}