Aromātai
379
Tauwehe
379
Tohaina
Kua tāruatia ki te papatopenga
2+5\left(2+\frac{8\times 4+12}{4}+\left(6+8\right)\sqrt{16}\right)+32
Whakawehea te 6 ki te 3, kia riro ko 2.
2+5\left(2+\frac{32+12}{4}+\left(6+8\right)\sqrt{16}\right)+32
Whakareatia te 8 ki te 4, ka 32.
2+5\left(2+\frac{44}{4}+\left(6+8\right)\sqrt{16}\right)+32
Tāpirihia te 32 ki te 12, ka 44.
2+5\left(2+11+\left(6+8\right)\sqrt{16}\right)+32
Whakawehea te 44 ki te 4, kia riro ko 11.
2+5\left(13+\left(6+8\right)\sqrt{16}\right)+32
Tāpirihia te 2 ki te 11, ka 13.
2+5\left(13+14\sqrt{16}\right)+32
Tāpirihia te 6 ki te 8, ka 14.
2+5\left(13+14\times 4\right)+32
Tātaitia te pūtakerua o 16 kia tae ki 4.
2+5\left(13+56\right)+32
Whakareatia te 14 ki te 4, ka 56.
2+5\times 69+32
Tāpirihia te 13 ki te 56, ka 69.
2+345+32
Whakareatia te 5 ki te 69, ka 345.
347+32
Tāpirihia te 2 ki te 345, ka 347.
379
Tāpirihia te 347 ki te 32, ka 379.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}