Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{6}{6\sqrt{2}}+\frac{8}{\sqrt{32}}
Tauwehea te 72=6^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 2} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{2}. Tuhia te pūtakerua o te 6^{2}.
\frac{6\sqrt{2}}{6\left(\sqrt{2}\right)^{2}}+\frac{8}{\sqrt{32}}
Whakangāwaritia te tauraro o \frac{6}{6\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{6\sqrt{2}}{6\times 2}+\frac{8}{\sqrt{32}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{2}}{2}+\frac{8}{\sqrt{32}}
Me whakakore tahi te 6 i te taurunga me te tauraro.
\frac{\sqrt{2}}{2}+\frac{8}{4\sqrt{2}}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
\frac{\sqrt{2}}{2}+\frac{8\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{8}{4\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{2}}{2}+\frac{8\sqrt{2}}{4\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{2}}{2}+\sqrt{2}
Me whakakore tahi te 2\times 4 i te taurunga me te tauraro.
\frac{3}{2}\sqrt{2}
Pahekotia te \frac{\sqrt{2}}{2} me \sqrt{2}, ka \frac{3}{2}\sqrt{2}.