Aromātai
\frac{3\sqrt{2}}{2}\approx 2.121320344
Tohaina
Kua tāruatia ki te papatopenga
\frac{6}{6\sqrt{2}}+\frac{8}{\sqrt{32}}
Tauwehea te 72=6^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 2} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{2}. Tuhia te pūtakerua o te 6^{2}.
\frac{6\sqrt{2}}{6\left(\sqrt{2}\right)^{2}}+\frac{8}{\sqrt{32}}
Whakangāwaritia te tauraro o \frac{6}{6\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{6\sqrt{2}}{6\times 2}+\frac{8}{\sqrt{32}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{2}}{2}+\frac{8}{\sqrt{32}}
Me whakakore tahi te 6 i te taurunga me te tauraro.
\frac{\sqrt{2}}{2}+\frac{8}{4\sqrt{2}}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
\frac{\sqrt{2}}{2}+\frac{8\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{8}{4\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{2}}{2}+\frac{8\sqrt{2}}{4\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{2}}{2}+\sqrt{2}
Me whakakore tahi te 2\times 4 i te taurunga me te tauraro.
\frac{3}{2}\sqrt{2}
Pahekotia te \frac{\sqrt{2}}{2} me \sqrt{2}, ka \frac{3}{2}\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}