Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\times 5x-3\left(x-2\right)=27-6\left(x-\frac{2x-1}{3}\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,2.
20x-3\left(x-2\right)=27-6\left(x-\frac{2x-1}{3}\right)
Whakareatia te 4 ki te 5, ka 20.
20x-3x+6=27-6\left(x-\frac{2x-1}{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-2.
17x+6=27-6\left(x-\frac{2x-1}{3}\right)
Pahekotia te 20x me -3x, ka 17x.
17x+6=27-6\left(x-\left(\frac{2}{3}x-\frac{1}{3}\right)\right)
Whakawehea ia wā o 2x-1 ki te 3, kia riro ko \frac{2}{3}x-\frac{1}{3}.
17x+6=27-6\left(x-\frac{2}{3}x-\left(-\frac{1}{3}\right)\right)
Hei kimi i te tauaro o \frac{2}{3}x-\frac{1}{3}, kimihia te tauaro o ia taurangi.
17x+6=27-6\left(x-\frac{2}{3}x+\frac{1}{3}\right)
Ko te tauaro o -\frac{1}{3} ko \frac{1}{3}.
17x+6=27-6\left(\frac{1}{3}x+\frac{1}{3}\right)
Pahekotia te x me -\frac{2}{3}x, ka \frac{1}{3}x.
17x+6=27-6\times \frac{1}{3}x-6\times \frac{1}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te \frac{1}{3}x+\frac{1}{3}.
17x+6=27+\frac{-6}{3}x-6\times \frac{1}{3}
Whakareatia te -6 ki te \frac{1}{3}, ka \frac{-6}{3}.
17x+6=27-2x-6\times \frac{1}{3}
Whakawehea te -6 ki te 3, kia riro ko -2.
17x+6=27-2x+\frac{-6}{3}
Whakareatia te -6 ki te \frac{1}{3}, ka \frac{-6}{3}.
17x+6=27-2x-2
Whakawehea te -6 ki te 3, kia riro ko -2.
17x+6=25-2x
Tangohia te 2 i te 27, ka 25.
17x+6+2x=25
Me tāpiri te 2x ki ngā taha e rua.
19x+6=25
Pahekotia te 17x me 2x, ka 19x.
19x=25-6
Tangohia te 6 mai i ngā taha e rua.
19x=19
Tangohia te 6 i te 25, ka 19.
x=\frac{19}{19}
Whakawehea ngā taha e rua ki te 19.
x=1
Whakawehea te 19 ki te 19, kia riro ko 1.