Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\times 5x-3\left(x-2\right)=27-6\left(x-\frac{2x-1}{3}\right)
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,2.
20x-3\left(x-2\right)=27-6\left(x-\frac{2x-1}{3}\right)
Whakareatia te 4 ki te 5, ka 20.
20x-3x+6=27-6\left(x-\frac{2x-1}{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-2.
17x+6=27-6\left(x-\frac{2x-1}{3}\right)
Pahekotia te 20x me -3x, ka 17x.
17x+6=27-6\left(x-\left(\frac{2}{3}x-\frac{1}{3}\right)\right)
Whakawehea ia wā o 2x-1 ki te 3, kia riro ko \frac{2}{3}x-\frac{1}{3}.
17x+6=27-6\left(x-\frac{2}{3}x-\left(-\frac{1}{3}\right)\right)
Hei kimi i te tauaro o \frac{2}{3}x-\frac{1}{3}, kimihia te tauaro o ia taurangi.
17x+6=27-6\left(x-\frac{2}{3}x+\frac{1}{3}\right)
Ko te tauaro o -\frac{1}{3} ko \frac{1}{3}.
17x+6=27-6\left(\frac{1}{3}x+\frac{1}{3}\right)
Pahekotia te x me -\frac{2}{3}x, ka \frac{1}{3}x.
17x+6=27-6\times \frac{1}{3}x-6\times \frac{1}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te \frac{1}{3}x+\frac{1}{3}.
17x+6=27+\frac{-6}{3}x-6\times \frac{1}{3}
Whakareatia te -6 ki te \frac{1}{3}, ka \frac{-6}{3}.
17x+6=27-2x-6\times \frac{1}{3}
Whakawehea te -6 ki te 3, kia riro ko -2.
17x+6=27-2x+\frac{-6}{3}
Whakareatia te -6 ki te \frac{1}{3}, ka \frac{-6}{3}.
17x+6=27-2x-2
Whakawehea te -6 ki te 3, kia riro ko -2.
17x+6=25-2x
Tangohia te 2 i te 27, ka 25.
17x+6+2x=25
Me tāpiri te 2x ki ngā taha e rua.
19x+6=25
Pahekotia te 17x me 2x, ka 19x.
19x=25-6
Tangohia te 6 mai i ngā taha e rua.
19x=19
Tangohia te 6 i te 25, ka 19.
x=\frac{19}{19}
Whakawehea ngā taha e rua ki te 19.
x=1
Whakawehea te 19 ki te 19, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}