Aromātai
\frac{763\sqrt{5222}}{38}\approx 1450.973147032
Tohaina
Kua tāruatia ki te papatopenga
560\times \frac{109}{304}\sqrt{\frac{5222\times 20}{2000}}
Whakahekea te hautanga \frac{545}{1520} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{560\times 109}{304}\sqrt{\frac{5222\times 20}{2000}}
Tuhia te 560\times \frac{109}{304} hei hautanga kotahi.
\frac{61040}{304}\sqrt{\frac{5222\times 20}{2000}}
Whakareatia te 560 ki te 109, ka 61040.
\frac{3815}{19}\sqrt{\frac{5222\times 20}{2000}}
Whakahekea te hautanga \frac{61040}{304} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
\frac{3815}{19}\sqrt{\frac{104440}{2000}}
Whakareatia te 5222 ki te 20, ka 104440.
\frac{3815}{19}\sqrt{\frac{2611}{50}}
Whakahekea te hautanga \frac{104440}{2000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
\frac{3815}{19}\times \frac{\sqrt{2611}}{\sqrt{50}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2611}{50}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2611}}{\sqrt{50}}.
\frac{3815}{19}\times \frac{\sqrt{2611}}{5\sqrt{2}}
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
\frac{3815}{19}\times \frac{\sqrt{2611}\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{2611}}{5\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{3815}{19}\times \frac{\sqrt{2611}\sqrt{2}}{5\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{3815}{19}\times \frac{\sqrt{5222}}{5\times 2}
Hei whakarea \sqrt{2611} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3815}{19}\times \frac{\sqrt{5222}}{10}
Whakareatia te 5 ki te 2, ka 10.
\frac{3815\sqrt{5222}}{19\times 10}
Me whakarea te \frac{3815}{19} ki te \frac{\sqrt{5222}}{10} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{763\sqrt{5222}}{2\times 19}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{763\sqrt{5222}}{38}
Whakareatia te 2 ki te 19, ka 38.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}