Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(5+5i\right)\left(-3+4i\right)}{\left(-3-4i\right)\left(-3+4i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, -3+4i.
\frac{\left(5+5i\right)\left(-3+4i\right)}{\left(-3\right)^{2}-4^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+5i\right)\left(-3+4i\right)}{25}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4i^{2}}{25}
Me whakarea ngā tau matatini 5+5i me -3+4i pēnā i te whakarea huarua.
\frac{5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4\left(-1\right)}{25}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{-15+20i-15i-20}{25}
Mahia ngā whakarea i roto o 5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4\left(-1\right).
\frac{-15-20+\left(20-15\right)i}{25}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -15+20i-15i-20.
\frac{-35+5i}{25}
Mahia ngā tāpiri i roto o -15-20+\left(20-15\right)i.
-\frac{7}{5}+\frac{1}{5}i
Whakawehea te -35+5i ki te 25, kia riro ko -\frac{7}{5}+\frac{1}{5}i.
Re(\frac{\left(5+5i\right)\left(-3+4i\right)}{\left(-3-4i\right)\left(-3+4i\right)})
Me whakarea te taurunga me te tauraro o \frac{5+5i}{-3-4i} ki te haumi hiato o te tauraro, -3+4i.
Re(\frac{\left(5+5i\right)\left(-3+4i\right)}{\left(-3\right)^{2}-4^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+5i\right)\left(-3+4i\right)}{25})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4i^{2}}{25})
Me whakarea ngā tau matatini 5+5i me -3+4i pēnā i te whakarea huarua.
Re(\frac{5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4\left(-1\right)}{25})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{-15+20i-15i-20}{25})
Mahia ngā whakarea i roto o 5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4\left(-1\right).
Re(\frac{-15-20+\left(20-15\right)i}{25})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -15+20i-15i-20.
Re(\frac{-35+5i}{25})
Mahia ngā tāpiri i roto o -15-20+\left(20-15\right)i.
Re(-\frac{7}{5}+\frac{1}{5}i)
Whakawehea te -35+5i ki te 25, kia riro ko -\frac{7}{5}+\frac{1}{5}i.
-\frac{7}{5}
Ko te wāhi tūturu o -\frac{7}{5}+\frac{1}{5}i ko -\frac{7}{5}.