Aromātai
-\frac{7}{5}+\frac{1}{5}i=-1.4+0.2i
Wāhi Tūturu
-\frac{7}{5} = -1\frac{2}{5} = -1.4
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(5+5i\right)\left(-3+4i\right)}{\left(-3-4i\right)\left(-3+4i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, -3+4i.
\frac{\left(5+5i\right)\left(-3+4i\right)}{\left(-3\right)^{2}-4^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+5i\right)\left(-3+4i\right)}{25}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4i^{2}}{25}
Me whakarea ngā tau matatini 5+5i me -3+4i pēnā i te whakarea huarua.
\frac{5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4\left(-1\right)}{25}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{-15+20i-15i-20}{25}
Mahia ngā whakarea i roto o 5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4\left(-1\right).
\frac{-15-20+\left(20-15\right)i}{25}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -15+20i-15i-20.
\frac{-35+5i}{25}
Mahia ngā tāpiri i roto o -15-20+\left(20-15\right)i.
-\frac{7}{5}+\frac{1}{5}i
Whakawehea te -35+5i ki te 25, kia riro ko -\frac{7}{5}+\frac{1}{5}i.
Re(\frac{\left(5+5i\right)\left(-3+4i\right)}{\left(-3-4i\right)\left(-3+4i\right)})
Me whakarea te taurunga me te tauraro o \frac{5+5i}{-3-4i} ki te haumi hiato o te tauraro, -3+4i.
Re(\frac{\left(5+5i\right)\left(-3+4i\right)}{\left(-3\right)^{2}-4^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+5i\right)\left(-3+4i\right)}{25})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4i^{2}}{25})
Me whakarea ngā tau matatini 5+5i me -3+4i pēnā i te whakarea huarua.
Re(\frac{5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4\left(-1\right)}{25})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{-15+20i-15i-20}{25})
Mahia ngā whakarea i roto o 5\left(-3\right)+5\times \left(4i\right)+5i\left(-3\right)+5\times 4\left(-1\right).
Re(\frac{-15-20+\left(20-15\right)i}{25})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -15+20i-15i-20.
Re(\frac{-35+5i}{25})
Mahia ngā tāpiri i roto o -15-20+\left(20-15\right)i.
Re(-\frac{7}{5}+\frac{1}{5}i)
Whakawehea te -35+5i ki te 25, kia riro ko -\frac{7}{5}+\frac{1}{5}i.
-\frac{7}{5}
Ko te wāhi tūturu o -\frac{7}{5}+\frac{1}{5}i ko -\frac{7}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}