Aromātai
7
Tauwehe
7
Tohaina
Kua tāruatia ki te papatopenga
\frac{5+12+28+16+9}{1+2+4+2+1}
Whakareatia te 5 ki te 1, ka 5. Whakareatia te 6 ki te 2, ka 12. Whakareatia te 7 ki te 4, ka 28. Whakareatia te 8 ki te 2, ka 16.
\frac{17+28+16+9}{1+2+4+2+1}
Tāpirihia te 5 ki te 12, ka 17.
\frac{45+16+9}{1+2+4+2+1}
Tāpirihia te 17 ki te 28, ka 45.
\frac{61+9}{1+2+4+2+1}
Tāpirihia te 45 ki te 16, ka 61.
\frac{70}{1+2+4+2+1}
Tāpirihia te 61 ki te 9, ka 70.
\frac{70}{3+4+2+1}
Tāpirihia te 1 ki te 2, ka 3.
\frac{70}{7+2+1}
Tāpirihia te 3 ki te 4, ka 7.
\frac{70}{9+1}
Tāpirihia te 7 ki te 2, ka 9.
\frac{70}{10}
Tāpirihia te 9 ki te 1, ka 10.
7
Whakawehea te 70 ki te 10, kia riro ko 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}