Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+1 me x-1 ko \left(x-1\right)\left(x+1\right). Whakareatia \frac{5}{x+1} ki te \frac{x-1}{x-1}. Whakareatia \frac{6}{x-1} ki te \frac{x+1}{x+1}.
\frac{5\left(x-1\right)+6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}
Tā te mea he rite te tauraro o \frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} me \frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5x-5+6x+6}{\left(x-1\right)\left(x+1\right)}
Mahia ngā whakarea i roto o 5\left(x-1\right)+6\left(x+1\right).
\frac{11x+1}{\left(x-1\right)\left(x+1\right)}
Whakakotahitia ngā kupu rite i 5x-5+6x+6.
\frac{11x+1}{x^{2}-1}
Whakarohaina te \left(x-1\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+1 me x-1 ko \left(x-1\right)\left(x+1\right). Whakareatia \frac{5}{x+1} ki te \frac{x-1}{x-1}. Whakareatia \frac{6}{x-1} ki te \frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5\left(x-1\right)+6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)})
Tā te mea he rite te tauraro o \frac{5\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} me \frac{6\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-5+6x+6}{\left(x-1\right)\left(x+1\right)})
Mahia ngā whakarea i roto o 5\left(x-1\right)+6\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x+1}{\left(x-1\right)\left(x+1\right)})
Whakakotahitia ngā kupu rite i 5x-5+6x+6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x+1}{x^{2}-1^{2}})
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{11x+1}{x^{2}-1})
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{\left(x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(11x^{1}+1)-\left(11x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-1)}{\left(x^{2}-1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-1\right)\times 11x^{1-1}-\left(11x^{1}+1\right)\times 2x^{2-1}}{\left(x^{2}-1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-1\right)\times 11x^{0}-\left(11x^{1}+1\right)\times 2x^{1}}{\left(x^{2}-1\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{2}\times 11x^{0}-11x^{0}-\left(11x^{1}\times 2x^{1}+2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{11x^{2}-11x^{0}-\left(11\times 2x^{1+1}+2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{11x^{2}-11x^{0}-\left(22x^{2}+2x^{1}\right)}{\left(x^{2}-1\right)^{2}}
Mahia ngā tātaitanga.
\frac{11x^{2}-11x^{0}-22x^{2}-2x^{1}}{\left(x^{2}-1\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(11-22\right)x^{2}-11x^{0}-2x^{1}}{\left(x^{2}-1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-11x^{2}-11x^{0}-2x^{1}}{\left(x^{2}-1\right)^{2}}
Tango 22 mai i 11.
\frac{-11x^{2}-11x^{0}-2x}{\left(x^{2}-1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-11x^{2}-11-2x}{\left(x^{2}-1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.