Aromātai
\frac{17}{18}\approx 0.944444444
Tauwehe
\frac{17}{2 \cdot 3 ^ {2}} = 0.9444444444444444
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{8}+\frac{2}{3}-\frac{8}{9}+\frac{2}{3}-\frac{3}{24}
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{15}{24}+\frac{16}{24}-\frac{8}{9}+\frac{2}{3}-\frac{3}{24}
Ko te maha noa iti rawa atu o 8 me 3 ko 24. Me tahuri \frac{5}{8} me \frac{2}{3} ki te hautau me te tautūnga 24.
\frac{15+16}{24}-\frac{8}{9}+\frac{2}{3}-\frac{3}{24}
Tā te mea he rite te tauraro o \frac{15}{24} me \frac{16}{24}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{31}{24}-\frac{8}{9}+\frac{2}{3}-\frac{3}{24}
Tāpirihia te 15 ki te 16, ka 31.
\frac{93}{72}-\frac{64}{72}+\frac{2}{3}-\frac{3}{24}
Ko te maha noa iti rawa atu o 24 me 9 ko 72. Me tahuri \frac{31}{24} me \frac{8}{9} ki te hautau me te tautūnga 72.
\frac{93-64}{72}+\frac{2}{3}-\frac{3}{24}
Tā te mea he rite te tauraro o \frac{93}{72} me \frac{64}{72}, me tango rāua mā te tango i ō raua taurunga.
\frac{29}{72}+\frac{2}{3}-\frac{3}{24}
Tangohia te 64 i te 93, ka 29.
\frac{29}{72}+\frac{48}{72}-\frac{3}{24}
Ko te maha noa iti rawa atu o 72 me 3 ko 72. Me tahuri \frac{29}{72} me \frac{2}{3} ki te hautau me te tautūnga 72.
\frac{29+48}{72}-\frac{3}{24}
Tā te mea he rite te tauraro o \frac{29}{72} me \frac{48}{72}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{77}{72}-\frac{3}{24}
Tāpirihia te 29 ki te 48, ka 77.
\frac{77}{72}-\frac{1}{8}
Whakahekea te hautanga \frac{3}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{77}{72}-\frac{9}{72}
Ko te maha noa iti rawa atu o 72 me 8 ko 72. Me tahuri \frac{77}{72} me \frac{1}{8} ki te hautau me te tautūnga 72.
\frac{77-9}{72}
Tā te mea he rite te tauraro o \frac{77}{72} me \frac{9}{72}, me tango rāua mā te tango i ō raua taurunga.
\frac{68}{72}
Tangohia te 9 i te 77, ka 68.
\frac{17}{18}
Whakahekea te hautanga \frac{68}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}