Whakaoti mō x (complex solution)
x=-\frac{2\sqrt{3}i}{3}\approx -0-1.154700538i
x=\frac{2\sqrt{3}i}{3}\approx 1.154700538i
Graph
Tohaina
Kua tāruatia ki te papatopenga
5\times 8+\left(2\times 6+9\right)x^{2}=12
Whakareatia ngā taha e rua o te whārite ki te 6.
40+\left(2\times 6+9\right)x^{2}=12
Whakareatia te 5 ki te 8, ka 40.
40+\left(12+9\right)x^{2}=12
Whakareatia te 2 ki te 6, ka 12.
40+21x^{2}=12
Tāpirihia te 12 ki te 9, ka 21.
21x^{2}=12-40
Tangohia te 40 mai i ngā taha e rua.
21x^{2}=-28
Tangohia te 40 i te 12, ka -28.
x^{2}=\frac{-28}{21}
Whakawehea ngā taha e rua ki te 21.
x^{2}=-\frac{4}{3}
Whakahekea te hautanga \frac{-28}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
x=\frac{2\sqrt{3}i}{3} x=-\frac{2\sqrt{3}i}{3}
Kua oti te whārite te whakatau.
5\times 8+\left(2\times 6+9\right)x^{2}=12
Whakareatia ngā taha e rua o te whārite ki te 6.
40+\left(2\times 6+9\right)x^{2}=12
Whakareatia te 5 ki te 8, ka 40.
40+\left(12+9\right)x^{2}=12
Whakareatia te 2 ki te 6, ka 12.
40+21x^{2}=12
Tāpirihia te 12 ki te 9, ka 21.
40+21x^{2}-12=0
Tangohia te 12 mai i ngā taha e rua.
28+21x^{2}=0
Tangohia te 12 i te 40, ka 28.
21x^{2}+28=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 21\times 28}}{2\times 21}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 21 mō a, 0 mō b, me 28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 21\times 28}}{2\times 21}
Pūrua 0.
x=\frac{0±\sqrt{-84\times 28}}{2\times 21}
Whakareatia -4 ki te 21.
x=\frac{0±\sqrt{-2352}}{2\times 21}
Whakareatia -84 ki te 28.
x=\frac{0±28\sqrt{3}i}{2\times 21}
Tuhia te pūtakerua o te -2352.
x=\frac{0±28\sqrt{3}i}{42}
Whakareatia 2 ki te 21.
x=\frac{2\sqrt{3}i}{3}
Nā, me whakaoti te whārite x=\frac{0±28\sqrt{3}i}{42} ina he tāpiri te ±.
x=-\frac{2\sqrt{3}i}{3}
Nā, me whakaoti te whārite x=\frac{0±28\sqrt{3}i}{42} ina he tango te ±.
x=\frac{2\sqrt{3}i}{3} x=-\frac{2\sqrt{3}i}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}