Whakaoti mō x
x = \frac{3 \sqrt{9389} + 1}{5} \approx 58.338111424
x=\frac{1-3\sqrt{9389}}{5}\approx -57.938111424
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{4}x^{2}-\frac{1}{2}x+0-65^{2}=0
Whakareatia te 0 ki te 25, ka 0.
\frac{5}{4}x^{2}-\frac{1}{2}x-65^{2}=0
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{5}{4}x^{2}-\frac{1}{2}x-4225=0
Tātaihia te 65 mā te pū o 2, kia riro ko 4225.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{5}{4}\left(-4225\right)}}{2\times \frac{5}{4}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{5}{4} mō a, -\frac{1}{2} mō b, me -4225 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{5}{4}\left(-4225\right)}}{2\times \frac{5}{4}}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-5\left(-4225\right)}}{2\times \frac{5}{4}}
Whakareatia -4 ki te \frac{5}{4}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+21125}}{2\times \frac{5}{4}}
Whakareatia -5 ki te -4225.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{84501}{4}}}{2\times \frac{5}{4}}
Tāpiri \frac{1}{4} ki te 21125.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{3\sqrt{9389}}{2}}{2\times \frac{5}{4}}
Tuhia te pūtakerua o te \frac{84501}{4}.
x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{2\times \frac{5}{4}}
Ko te tauaro o -\frac{1}{2} ko \frac{1}{2}.
x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}}
Whakareatia 2 ki te \frac{5}{4}.
x=\frac{3\sqrt{9389}+1}{2\times \frac{5}{2}}
Nā, me whakaoti te whārite x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}} ina he tāpiri te ±. Tāpiri \frac{1}{2} ki te \frac{3\sqrt{9389}}{2}.
x=\frac{3\sqrt{9389}+1}{5}
Whakawehe \frac{1+3\sqrt{9389}}{2} ki te \frac{5}{2} mā te whakarea \frac{1+3\sqrt{9389}}{2} ki te tau huripoki o \frac{5}{2}.
x=\frac{1-3\sqrt{9389}}{2\times \frac{5}{2}}
Nā, me whakaoti te whārite x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}} ina he tango te ±. Tango \frac{3\sqrt{9389}}{2} mai i \frac{1}{2}.
x=\frac{1-3\sqrt{9389}}{5}
Whakawehe \frac{1-3\sqrt{9389}}{2} ki te \frac{5}{2} mā te whakarea \frac{1-3\sqrt{9389}}{2} ki te tau huripoki o \frac{5}{2}.
x=\frac{3\sqrt{9389}+1}{5} x=\frac{1-3\sqrt{9389}}{5}
Kua oti te whārite te whakatau.
\frac{5}{4}x^{2}-\frac{1}{2}x+0-65^{2}=0
Whakareatia te 0 ki te 25, ka 0.
\frac{5}{4}x^{2}-\frac{1}{2}x-65^{2}=0
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{5}{4}x^{2}-\frac{1}{2}x-4225=0
Tātaihia te 65 mā te pū o 2, kia riro ko 4225.
\frac{5}{4}x^{2}-\frac{1}{2}x=4225
Me tāpiri te 4225 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\frac{5}{4}x^{2}-\frac{1}{2}x}{\frac{5}{4}}=\frac{4225}{\frac{5}{4}}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\left(-\frac{\frac{1}{2}}{\frac{5}{4}}\right)x=\frac{4225}{\frac{5}{4}}
Mā te whakawehe ki te \frac{5}{4} ka wetekia te whakareanga ki te \frac{5}{4}.
x^{2}-\frac{2}{5}x=\frac{4225}{\frac{5}{4}}
Whakawehe -\frac{1}{2} ki te \frac{5}{4} mā te whakarea -\frac{1}{2} ki te tau huripoki o \frac{5}{4}.
x^{2}-\frac{2}{5}x=3380
Whakawehe 4225 ki te \frac{5}{4} mā te whakarea 4225 ki te tau huripoki o \frac{5}{4}.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=3380+\left(-\frac{1}{5}\right)^{2}
Whakawehea te -\frac{2}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{5}. Nā, tāpiria te pūrua o te -\frac{1}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{5}x+\frac{1}{25}=3380+\frac{1}{25}
Pūruatia -\frac{1}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{84501}{25}
Tāpiri 3380 ki te \frac{1}{25}.
\left(x-\frac{1}{5}\right)^{2}=\frac{84501}{25}
Tauwehea x^{2}-\frac{2}{5}x+\frac{1}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{84501}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{5}=\frac{3\sqrt{9389}}{5} x-\frac{1}{5}=-\frac{3\sqrt{9389}}{5}
Whakarūnātia.
x=\frac{3\sqrt{9389}+1}{5} x=\frac{1-3\sqrt{9389}}{5}
Me tāpiri \frac{1}{5} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}