Aromātai
\frac{15-23x}{6x-5}
Whakaroha
\frac{15-23x}{6x-5}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{2\left(\frac{5}{2x}-\frac{3\times 2x}{2x}\right)}-3
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{2x}{2x}.
\frac{5}{2\times \frac{5-3\times 2x}{2x}}-3
Tā te mea he rite te tauraro o \frac{5}{2x} me \frac{3\times 2x}{2x}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{2\times \frac{5-6x}{2x}}-3
Mahia ngā whakarea i roto o 5-3\times 2x.
\frac{5}{\frac{2\left(5-6x\right)}{2x}}-3
Tuhia te 2\times \frac{5-6x}{2x} hei hautanga kotahi.
\frac{5}{\frac{-6x+5}{x}}-3
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{5x}{-6x+5}-3
Whakawehe 5 ki te \frac{-6x+5}{x} mā te whakarea 5 ki te tau huripoki o \frac{-6x+5}{x}.
\frac{5x}{-6x+5}-\frac{3\left(-6x+5\right)}{-6x+5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{-6x+5}{-6x+5}.
\frac{5x-3\left(-6x+5\right)}{-6x+5}
Tā te mea he rite te tauraro o \frac{5x}{-6x+5} me \frac{3\left(-6x+5\right)}{-6x+5}, me tango rāua mā te tango i ō raua taurunga.
\frac{5x+18x-15}{-6x+5}
Mahia ngā whakarea i roto o 5x-3\left(-6x+5\right).
\frac{23x-15}{-6x+5}
Whakakotahitia ngā kupu rite i 5x+18x-15.
\frac{5}{2\left(\frac{5}{2x}-\frac{3\times 2x}{2x}\right)}-3
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{2x}{2x}.
\frac{5}{2\times \frac{5-3\times 2x}{2x}}-3
Tā te mea he rite te tauraro o \frac{5}{2x} me \frac{3\times 2x}{2x}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{2\times \frac{5-6x}{2x}}-3
Mahia ngā whakarea i roto o 5-3\times 2x.
\frac{5}{\frac{2\left(5-6x\right)}{2x}}-3
Tuhia te 2\times \frac{5-6x}{2x} hei hautanga kotahi.
\frac{5}{\frac{-6x+5}{x}}-3
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{5x}{-6x+5}-3
Whakawehe 5 ki te \frac{-6x+5}{x} mā te whakarea 5 ki te tau huripoki o \frac{-6x+5}{x}.
\frac{5x}{-6x+5}-\frac{3\left(-6x+5\right)}{-6x+5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3 ki te \frac{-6x+5}{-6x+5}.
\frac{5x-3\left(-6x+5\right)}{-6x+5}
Tā te mea he rite te tauraro o \frac{5x}{-6x+5} me \frac{3\left(-6x+5\right)}{-6x+5}, me tango rāua mā te tango i ō raua taurunga.
\frac{5x+18x-15}{-6x+5}
Mahia ngā whakarea i roto o 5x-3\left(-6x+5\right).
\frac{23x-15}{-6x+5}
Whakakotahitia ngā kupu rite i 5x+18x-15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}