\frac{ 5 }{ { 51 }^{ 2 } 2x25 \sqrt{ 8 \% 539+3 } }
Aromātai
\frac{25\sqrt{1153}}{5997906x_{25}}
Kimi Pārōnaki e ai ki x_25
-\frac{25\sqrt{1153}}{5997906x_{25}^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{2\times 2601x_{25}\sqrt{\frac{8}{100}\times 539+3}}
Tātaihia te 51 mā te pū o 2, kia riro ko 2601.
\frac{5}{5202x_{25}\sqrt{\frac{8}{100}\times 539+3}}
Whakareatia te 2 ki te 2601, ka 5202.
\frac{5}{5202x_{25}\sqrt{\frac{2}{25}\times 539+3}}
Whakahekea te hautanga \frac{8}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{5}{5202x_{25}\sqrt{\frac{2\times 539}{25}+3}}
Tuhia te \frac{2}{25}\times 539 hei hautanga kotahi.
\frac{5}{5202x_{25}\sqrt{\frac{1078}{25}+3}}
Whakareatia te 2 ki te 539, ka 1078.
\frac{5}{5202x_{25}\sqrt{\frac{1078}{25}+\frac{75}{25}}}
Me tahuri te 3 ki te hautau \frac{75}{25}.
\frac{5}{5202x_{25}\sqrt{\frac{1078+75}{25}}}
Tā te mea he rite te tauraro o \frac{1078}{25} me \frac{75}{25}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{5202x_{25}\sqrt{\frac{1153}{25}}}
Tāpirihia te 1078 ki te 75, ka 1153.
\frac{5}{5202x_{25}\times \frac{\sqrt{1153}}{\sqrt{25}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1153}{25}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1153}}{\sqrt{25}}.
\frac{5}{5202x_{25}\times \frac{\sqrt{1153}}{5}}
Tātaitia te pūtakerua o 25 kia tae ki 5.
\frac{5}{\frac{5202\sqrt{1153}}{5}x_{25}}
Tuhia te 5202\times \frac{\sqrt{1153}}{5} hei hautanga kotahi.
\frac{5}{\frac{5202\sqrt{1153}x_{25}}{5}}
Tuhia te \frac{5202\sqrt{1153}}{5}x_{25} hei hautanga kotahi.
\frac{5\times 5}{5202\sqrt{1153}x_{25}}
Whakawehe 5 ki te \frac{5202\sqrt{1153}x_{25}}{5} mā te whakarea 5 ki te tau huripoki o \frac{5202\sqrt{1153}x_{25}}{5}.
\frac{5\times 5\sqrt{1153}}{5202\left(\sqrt{1153}\right)^{2}x_{25}}
Whakangāwaritia te tauraro o \frac{5\times 5}{5202\sqrt{1153}x_{25}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{1153}.
\frac{5\times 5\sqrt{1153}}{5202\times 1153x_{25}}
Ko te pūrua o \sqrt{1153} ko 1153.
\frac{25\sqrt{1153}}{5202\times 1153x_{25}}
Whakareatia te 5 ki te 5, ka 25.
\frac{25\sqrt{1153}}{5997906x_{25}}
Whakareatia te 5202 ki te 1153, ka 5997906.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}