Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5}{\sqrt{6}-2\sqrt{2}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{\left(\sqrt{6}-2\sqrt{2}\right)\left(\sqrt{6}+2\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{5}{\sqrt{6}-2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}+2\sqrt{2}.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(-2\sqrt{2}\right)^{2}}
Whakaarohia te \left(\sqrt{6}-2\sqrt{2}\right)\left(\sqrt{6}+2\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{6-\left(-2\sqrt{2}\right)^{2}}
Ko te pūrua o \sqrt{6} ko 6.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{6-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}
Whakarohaina te \left(-2\sqrt{2}\right)^{2}.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{6-4\left(\sqrt{2}\right)^{2}}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{6-4\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{6-8}
Whakareatia te 4 ki te 2, ka 8.
\frac{5\left(\sqrt{6}+2\sqrt{2}\right)}{-2}
Tangohia te 8 i te 6, ka -2.
\frac{5\sqrt{6}+10\sqrt{2}}{-2}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te \sqrt{6}+2\sqrt{2}.