Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{5}{\sqrt{2}+\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}-\sqrt{3}.
\frac{5\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Pūrua \sqrt{2}. Pūrua \sqrt{3}.
\frac{5\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Tangohia te 3 i te 2, ka -1.
-5\left(\sqrt{2}-\sqrt{3}\right)
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
-5\sqrt{2}+5\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te \sqrt{2}-\sqrt{3}.