Aromātai
\frac{109375}{19321}\approx 5.660938875
Tauwehe
\frac{7 \cdot 5 ^ {6}}{139 ^ {2}} = 5\frac{12770}{19321} = 5.660938874799441
Tohaina
Kua tāruatia ki te papatopenga
\frac{5\times \frac{5}{5.56^{2}\times \frac{0.2}{7}}}{5}
Whakawehe 5 ki te \frac{5}{\frac{5}{5.56^{2}\times \frac{0.2}{7}}} mā te whakarea 5 ki te tau huripoki o \frac{5}{\frac{5}{5.56^{2}\times \frac{0.2}{7}}}.
\frac{5}{5.56^{2}\times \frac{0.2}{7}}
Me whakakore te 5 me te 5.
\frac{5}{30.9136\times \frac{0.2}{7}}
Tātaihia te 5.56 mā te pū o 2, kia riro ko 30.9136.
\frac{5}{30.9136\times \frac{2}{70}}
Whakarohaina te \frac{0.2}{7} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{5}{30.9136\times \frac{1}{35}}
Whakahekea te hautanga \frac{2}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{\frac{19321}{625}\times \frac{1}{35}}
Me tahuri ki tau ā-ira 30.9136 ki te hautau \frac{309136}{10000}. Whakahekea te hautanga \frac{309136}{10000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
\frac{5}{\frac{19321\times 1}{625\times 35}}
Me whakarea te \frac{19321}{625} ki te \frac{1}{35} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5}{\frac{19321}{21875}}
Mahia ngā whakarea i roto i te hautanga \frac{19321\times 1}{625\times 35}.
5\times \frac{21875}{19321}
Whakawehe 5 ki te \frac{19321}{21875} mā te whakarea 5 ki te tau huripoki o \frac{19321}{21875}.
\frac{5\times 21875}{19321}
Tuhia te 5\times \frac{21875}{19321} hei hautanga kotahi.
\frac{109375}{19321}
Whakareatia te 5 ki te 21875, ka 109375.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}