Aromātai
25
Tauwehe
5^{2}
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{5!}{4!\times 1!}\right)^{2}
Whakareatia te \frac{5!}{4!\times 1!} ki te \frac{5!}{4!\times 1!}, ka \left(\frac{5!}{4!\times 1!}\right)^{2}.
\left(\frac{120}{4!\times 1!}\right)^{2}
Ko te huarea o 5 ko 120.
\left(\frac{120}{24\times 1!}\right)^{2}
Ko te huarea o 4 ko 24.
\left(\frac{120}{24\times 1}\right)^{2}
Ko te huarea o 1 ko 1.
\left(\frac{120}{24}\right)^{2}
Whakareatia te 24 ki te 1, ka 24.
5^{2}
Whakawehea te 120 ki te 24, kia riro ko 5.
25
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}