Whakaoti mō x
x=\frac{5\sqrt{57}}{48}-\frac{3}{16}\approx 0.598941087
x=-\frac{5\sqrt{57}}{48}-\frac{3}{16}\approx -0.973941087
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac{ 4x-3 }{ 2x+1 } -10 \frac{ 2x-1 }{ 4x-3 } =3
Tohaina
Kua tāruatia ki te papatopenga
\left(4x-3\right)\left(4x-3\right)-10\left(2x+1\right)\left(2x-1\right)=3\left(4x-3\right)\left(2x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},\frac{3}{4} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(4x-3\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+1,4x-3.
\left(4x-3\right)^{2}-10\left(2x+1\right)\left(2x-1\right)=3\left(4x-3\right)\left(2x+1\right)
Whakareatia te 4x-3 ki te 4x-3, ka \left(4x-3\right)^{2}.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)=3\left(4x-3\right)\left(2x+1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4x-3\right)^{2}.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)=\left(12x-9\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4x-3.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)=24x^{2}-6x-9
Whakamahia te āhuatanga tuaritanga hei whakarea te 12x-9 ki te 2x+1 ka whakakotahi i ngā kupu rite.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)-24x^{2}=-6x-9
Tangohia te 24x^{2} mai i ngā taha e rua.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)-24x^{2}+6x=-9
Me tāpiri te 6x ki ngā taha e rua.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)-24x^{2}+6x+9=0
Me tāpiri te 9 ki ngā taha e rua.
16x^{2}-24x+9+\left(-20x-10\right)\left(2x-1\right)-24x^{2}+6x+9=0
Whakamahia te āhuatanga tohatoha hei whakarea te -10 ki te 2x+1.
16x^{2}-24x+9-40x^{2}+10-24x^{2}+6x+9=0
Whakamahia te āhuatanga tuaritanga hei whakarea te -20x-10 ki te 2x-1 ka whakakotahi i ngā kupu rite.
-24x^{2}-24x+9+10-24x^{2}+6x+9=0
Pahekotia te 16x^{2} me -40x^{2}, ka -24x^{2}.
-24x^{2}-24x+19-24x^{2}+6x+9=0
Tāpirihia te 9 ki te 10, ka 19.
-48x^{2}-24x+19+6x+9=0
Pahekotia te -24x^{2} me -24x^{2}, ka -48x^{2}.
-48x^{2}-18x+19+9=0
Pahekotia te -24x me 6x, ka -18x.
-48x^{2}-18x+28=0
Tāpirihia te 19 ki te 9, ka 28.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-48\right)\times 28}}{2\left(-48\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -48 mō a, -18 mō b, me 28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-48\right)\times 28}}{2\left(-48\right)}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324+192\times 28}}{2\left(-48\right)}
Whakareatia -4 ki te -48.
x=\frac{-\left(-18\right)±\sqrt{324+5376}}{2\left(-48\right)}
Whakareatia 192 ki te 28.
x=\frac{-\left(-18\right)±\sqrt{5700}}{2\left(-48\right)}
Tāpiri 324 ki te 5376.
x=\frac{-\left(-18\right)±10\sqrt{57}}{2\left(-48\right)}
Tuhia te pūtakerua o te 5700.
x=\frac{18±10\sqrt{57}}{2\left(-48\right)}
Ko te tauaro o -18 ko 18.
x=\frac{18±10\sqrt{57}}{-96}
Whakareatia 2 ki te -48.
x=\frac{10\sqrt{57}+18}{-96}
Nā, me whakaoti te whārite x=\frac{18±10\sqrt{57}}{-96} ina he tāpiri te ±. Tāpiri 18 ki te 10\sqrt{57}.
x=-\frac{5\sqrt{57}}{48}-\frac{3}{16}
Whakawehe 18+10\sqrt{57} ki te -96.
x=\frac{18-10\sqrt{57}}{-96}
Nā, me whakaoti te whārite x=\frac{18±10\sqrt{57}}{-96} ina he tango te ±. Tango 10\sqrt{57} mai i 18.
x=\frac{5\sqrt{57}}{48}-\frac{3}{16}
Whakawehe 18-10\sqrt{57} ki te -96.
x=-\frac{5\sqrt{57}}{48}-\frac{3}{16} x=\frac{5\sqrt{57}}{48}-\frac{3}{16}
Kua oti te whārite te whakatau.
\left(4x-3\right)\left(4x-3\right)-10\left(2x+1\right)\left(2x-1\right)=3\left(4x-3\right)\left(2x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},\frac{3}{4} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(4x-3\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x+1,4x-3.
\left(4x-3\right)^{2}-10\left(2x+1\right)\left(2x-1\right)=3\left(4x-3\right)\left(2x+1\right)
Whakareatia te 4x-3 ki te 4x-3, ka \left(4x-3\right)^{2}.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)=3\left(4x-3\right)\left(2x+1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4x-3\right)^{2}.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)=\left(12x-9\right)\left(2x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 4x-3.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)=24x^{2}-6x-9
Whakamahia te āhuatanga tuaritanga hei whakarea te 12x-9 ki te 2x+1 ka whakakotahi i ngā kupu rite.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)-24x^{2}=-6x-9
Tangohia te 24x^{2} mai i ngā taha e rua.
16x^{2}-24x+9-10\left(2x+1\right)\left(2x-1\right)-24x^{2}+6x=-9
Me tāpiri te 6x ki ngā taha e rua.
16x^{2}-24x+9+\left(-20x-10\right)\left(2x-1\right)-24x^{2}+6x=-9
Whakamahia te āhuatanga tohatoha hei whakarea te -10 ki te 2x+1.
16x^{2}-24x+9-40x^{2}+10-24x^{2}+6x=-9
Whakamahia te āhuatanga tuaritanga hei whakarea te -20x-10 ki te 2x-1 ka whakakotahi i ngā kupu rite.
-24x^{2}-24x+9+10-24x^{2}+6x=-9
Pahekotia te 16x^{2} me -40x^{2}, ka -24x^{2}.
-24x^{2}-24x+19-24x^{2}+6x=-9
Tāpirihia te 9 ki te 10, ka 19.
-48x^{2}-24x+19+6x=-9
Pahekotia te -24x^{2} me -24x^{2}, ka -48x^{2}.
-48x^{2}-18x+19=-9
Pahekotia te -24x me 6x, ka -18x.
-48x^{2}-18x=-9-19
Tangohia te 19 mai i ngā taha e rua.
-48x^{2}-18x=-28
Tangohia te 19 i te -9, ka -28.
\frac{-48x^{2}-18x}{-48}=-\frac{28}{-48}
Whakawehea ngā taha e rua ki te -48.
x^{2}+\left(-\frac{18}{-48}\right)x=-\frac{28}{-48}
Mā te whakawehe ki te -48 ka wetekia te whakareanga ki te -48.
x^{2}+\frac{3}{8}x=-\frac{28}{-48}
Whakahekea te hautanga \frac{-18}{-48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}+\frac{3}{8}x=\frac{7}{12}
Whakahekea te hautanga \frac{-28}{-48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}+\frac{3}{8}x+\left(\frac{3}{16}\right)^{2}=\frac{7}{12}+\left(\frac{3}{16}\right)^{2}
Whakawehea te \frac{3}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{16}. Nā, tāpiria te pūrua o te \frac{3}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{8}x+\frac{9}{256}=\frac{7}{12}+\frac{9}{256}
Pūruatia \frac{3}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{8}x+\frac{9}{256}=\frac{475}{768}
Tāpiri \frac{7}{12} ki te \frac{9}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{16}\right)^{2}=\frac{475}{768}
Tauwehea x^{2}+\frac{3}{8}x+\frac{9}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{16}\right)^{2}}=\sqrt{\frac{475}{768}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{16}=\frac{5\sqrt{57}}{48} x+\frac{3}{16}=-\frac{5\sqrt{57}}{48}
Whakarūnātia.
x=\frac{5\sqrt{57}}{48}-\frac{3}{16} x=-\frac{5\sqrt{57}}{48}-\frac{3}{16}
Me tango \frac{3}{16} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}