Whakaoti mō x
x=3
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-\frac{1}{2}x^{2}=\frac{15}{4}\times 2
Me whakarea ngā taha e rua ki te 2.
4x-\frac{1}{2}x^{2}=\frac{15}{2}
Whakareatia te \frac{15}{4} ki te 2, ka \frac{15}{2}.
4x-\frac{1}{2}x^{2}-\frac{15}{2}=0
Tangohia te \frac{15}{2} mai i ngā taha e rua.
-\frac{1}{2}x^{2}+4x-\frac{15}{2}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{1}{2}\right)\left(-\frac{15}{2}\right)}}{2\left(-\frac{1}{2}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{2} mō a, 4 mō b, me -\frac{15}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-\frac{1}{2}\right)\left(-\frac{15}{2}\right)}}{2\left(-\frac{1}{2}\right)}
Pūrua 4.
x=\frac{-4±\sqrt{16+2\left(-\frac{15}{2}\right)}}{2\left(-\frac{1}{2}\right)}
Whakareatia -4 ki te -\frac{1}{2}.
x=\frac{-4±\sqrt{16-15}}{2\left(-\frac{1}{2}\right)}
Whakareatia 2 ki te -\frac{15}{2}.
x=\frac{-4±\sqrt{1}}{2\left(-\frac{1}{2}\right)}
Tāpiri 16 ki te -15.
x=\frac{-4±1}{2\left(-\frac{1}{2}\right)}
Tuhia te pūtakerua o te 1.
x=\frac{-4±1}{-1}
Whakareatia 2 ki te -\frac{1}{2}.
x=-\frac{3}{-1}
Nā, me whakaoti te whārite x=\frac{-4±1}{-1} ina he tāpiri te ±. Tāpiri -4 ki te 1.
x=3
Whakawehe -3 ki te -1.
x=-\frac{5}{-1}
Nā, me whakaoti te whārite x=\frac{-4±1}{-1} ina he tango te ±. Tango 1 mai i -4.
x=5
Whakawehe -5 ki te -1.
x=3 x=5
Kua oti te whārite te whakatau.
4x-\frac{1}{2}x^{2}=\frac{15}{4}\times 2
Me whakarea ngā taha e rua ki te 2.
4x-\frac{1}{2}x^{2}=\frac{15}{2}
Whakareatia te \frac{15}{4} ki te 2, ka \frac{15}{2}.
-\frac{1}{2}x^{2}+4x=\frac{15}{2}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+4x}{-\frac{1}{2}}=\frac{\frac{15}{2}}{-\frac{1}{2}}
Me whakarea ngā taha e rua ki te -2.
x^{2}+\frac{4}{-\frac{1}{2}}x=\frac{\frac{15}{2}}{-\frac{1}{2}}
Mā te whakawehe ki te -\frac{1}{2} ka wetekia te whakareanga ki te -\frac{1}{2}.
x^{2}-8x=\frac{\frac{15}{2}}{-\frac{1}{2}}
Whakawehe 4 ki te -\frac{1}{2} mā te whakarea 4 ki te tau huripoki o -\frac{1}{2}.
x^{2}-8x=-15
Whakawehe \frac{15}{2} ki te -\frac{1}{2} mā te whakarea \frac{15}{2} ki te tau huripoki o -\frac{1}{2}.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=-15+16
Pūrua -4.
x^{2}-8x+16=1
Tāpiri -15 ki te 16.
\left(x-4\right)^{2}=1
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=1 x-4=-1
Whakarūnātia.
x=5 x=3
Me tāpiri 4 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}