Aromātai
-\frac{x^{2}}{500}+\frac{13x}{100}+1
Whakaroha
-\frac{x^{2}}{500}+\frac{13x}{100}+1
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac{ 4x(3-02x)+(100-4x)(1+ \frac{ x }{ 20 } ) }{ 100 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{4x\left(3-0x\right)+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Whakareatia te 0 ki te 2, ka 0.
\frac{4x\left(3-0\right)+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{4x\times 3+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Tangohia te 0 i te 3, ka 3.
\frac{12x+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Whakareatia te 4 ki te 3, ka 12.
\frac{12x+\left(100-4x\right)\left(\frac{20}{20}+\frac{x}{20}\right)}{100}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{20}{20}.
\frac{12x+\left(100-4x\right)\times \frac{20+x}{20}}{100}
Tā te mea he rite te tauraro o \frac{20}{20} me \frac{x}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12x+\frac{\left(100-4x\right)\left(20+x\right)}{20}}{100}
Tuhia te \left(100-4x\right)\times \frac{20+x}{20} hei hautanga kotahi.
\frac{\frac{20\times 12x}{20}+\frac{\left(100-4x\right)\left(20+x\right)}{20}}{100}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 12x ki te \frac{20}{20}.
\frac{\frac{20\times 12x+\left(100-4x\right)\left(20+x\right)}{20}}{100}
Tā te mea he rite te tauraro o \frac{20\times 12x}{20} me \frac{\left(100-4x\right)\left(20+x\right)}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{240x+2000+100x-80x-4x^{2}}{20}}{100}
Mahia ngā whakarea i roto o 20\times 12x+\left(100-4x\right)\left(20+x\right).
\frac{\frac{260x+2000-4x^{2}}{20}}{100}
Whakakotahitia ngā kupu rite i 240x+2000+100x-80x-4x^{2}.
\frac{260x+2000-4x^{2}}{20\times 100}
Tuhia te \frac{\frac{260x+2000-4x^{2}}{20}}{100} hei hautanga kotahi.
\frac{-4\left(x-\left(-\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)\left(x-\left(\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)}{20\times 100}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(x-\left(-\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)\left(x-\left(\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)}{5\times 100}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{-x^{2}+65x+500}{500}
Me whakaroha te kīanga.
\frac{4x\left(3-0x\right)+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Whakareatia te 0 ki te 2, ka 0.
\frac{4x\left(3-0\right)+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{4x\times 3+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Tangohia te 0 i te 3, ka 3.
\frac{12x+\left(100-4x\right)\left(1+\frac{x}{20}\right)}{100}
Whakareatia te 4 ki te 3, ka 12.
\frac{12x+\left(100-4x\right)\left(\frac{20}{20}+\frac{x}{20}\right)}{100}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{20}{20}.
\frac{12x+\left(100-4x\right)\times \frac{20+x}{20}}{100}
Tā te mea he rite te tauraro o \frac{20}{20} me \frac{x}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12x+\frac{\left(100-4x\right)\left(20+x\right)}{20}}{100}
Tuhia te \left(100-4x\right)\times \frac{20+x}{20} hei hautanga kotahi.
\frac{\frac{20\times 12x}{20}+\frac{\left(100-4x\right)\left(20+x\right)}{20}}{100}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 12x ki te \frac{20}{20}.
\frac{\frac{20\times 12x+\left(100-4x\right)\left(20+x\right)}{20}}{100}
Tā te mea he rite te tauraro o \frac{20\times 12x}{20} me \frac{\left(100-4x\right)\left(20+x\right)}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{240x+2000+100x-80x-4x^{2}}{20}}{100}
Mahia ngā whakarea i roto o 20\times 12x+\left(100-4x\right)\left(20+x\right).
\frac{\frac{260x+2000-4x^{2}}{20}}{100}
Whakakotahitia ngā kupu rite i 240x+2000+100x-80x-4x^{2}.
\frac{260x+2000-4x^{2}}{20\times 100}
Tuhia te \frac{\frac{260x+2000-4x^{2}}{20}}{100} hei hautanga kotahi.
\frac{-4\left(x-\left(-\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)\left(x-\left(\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)}{20\times 100}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(x-\left(-\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)\left(x-\left(\frac{5}{2}\sqrt{249}+\frac{65}{2}\right)\right)}{5\times 100}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{-x^{2}+65x+500}{500}
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}