Whakaoti mō x
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(4x+1\right)+8=x-4
Me whakarea ngā taha e rua o te whārite ki te 8, arā, te tauraro pātahi he tino iti rawa te kitea o 4,8.
8x+2+8=x-4
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 4x+1.
8x+10=x-4
Tāpirihia te 2 ki te 8, ka 10.
8x+10-x=-4
Tangohia te x mai i ngā taha e rua.
7x+10=-4
Pahekotia te 8x me -x, ka 7x.
7x=-4-10
Tangohia te 10 mai i ngā taha e rua.
7x=-14
Tangohia te 10 i te -4, ka -14.
x=\frac{-14}{7}
Whakawehea ngā taha e rua ki te 7.
x=-2
Whakawehea te -14 ki te 7, kia riro ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}