Whakaoti mō x
x = -\frac{50}{41} = -1\frac{9}{41} \approx -1.219512195
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\times 4x+2\times 25x+3\times 13x+2\times 25=3\times 20x
Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 10,15.
12x+2\times 25x+3\times 13x+2\times 25=3\times 20x
Whakareatia te 3 ki te 4, ka 12.
12x+50x+3\times 13x+2\times 25=3\times 20x
Whakareatia te 2 ki te 25, ka 50.
62x+3\times 13x+2\times 25=3\times 20x
Pahekotia te 12x me 50x, ka 62x.
62x+39x+2\times 25=3\times 20x
Whakareatia te 3 ki te 13, ka 39.
101x+2\times 25=3\times 20x
Pahekotia te 62x me 39x, ka 101x.
101x+50=3\times 20x
Whakareatia te 2 ki te 25, ka 50.
101x+50=60x
Whakareatia te 3 ki te 20, ka 60.
101x+50-60x=0
Tangohia te 60x mai i ngā taha e rua.
41x+50=0
Pahekotia te 101x me -60x, ka 41x.
41x=-50
Tangohia te 50 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-50}{41}
Whakawehea ngā taha e rua ki te 41.
x=-\frac{50}{41}
Ka taea te hautanga \frac{-50}{41} te tuhi anō ko -\frac{50}{41} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}